File size: 1,924 Bytes
5667ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: alex-miller/ODABert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cls-pooled-gender
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cls-pooled-gender

This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2146
- Accuracy: 0.9522
- F1: 0.9388
- Precision: 0.9093
- Recall: 0.9703

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5237        | 1.0   | 342  | 0.3170          | 0.9047   | 0.8842 | 0.8167    | 0.9638 |
| 0.2785        | 2.0   | 684  | 0.2489          | 0.9388   | 0.9226 | 0.8831    | 0.9658 |
| 0.2301        | 3.0   | 1026 | 0.2242          | 0.9537   | 0.9402 | 0.9171    | 0.9645 |
| 0.2071        | 4.0   | 1368 | 0.2169          | 0.9517   | 0.9381 | 0.9091    | 0.9690 |
| 0.1941        | 5.0   | 1710 | 0.2146          | 0.9522   | 0.9388 | 0.9093    | 0.9703 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1