File size: 2,169 Bytes
a066691
 
 
 
22c5ea2
a066691
 
 
 
 
 
 
 
 
 
 
 
 
22c5ea2
a066691
22c5ea2
 
a066691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd7726
a066691
 
 
 
 
 
1fd7726
 
 
 
 
 
 
 
 
 
a066691
 
 
 
 
1fd7726
a066691
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-ft-fake-detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-ft-fake-detection

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the alexandreacff/kaggle-fake-detection dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6261
- Accuracy: 0.6523

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6253        | 0.9851 | 33   | 0.6261          | 0.6523   |
| 0.4394        | 2.0    | 67   | 0.7140          | 0.5645   |
| 0.3685        | 2.9851 | 100  | 0.7181          | 0.5850   |
| 0.317         | 4.0    | 134  | 0.7291          | 0.6150   |
| 0.3027        | 4.9851 | 167  | 0.7457          | 0.6159   |
| 0.2672        | 6.0    | 201  | 0.7805          | 0.6243   |
| 0.2711        | 6.9851 | 234  | 0.8113          | 0.6215   |
| 0.2086        | 8.0    | 268  | 0.9130          | 0.5963   |
| 0.2077        | 8.9851 | 301  | 0.9042          | 0.6168   |
| 0.223         | 9.8507 | 330  | 0.8924          | 0.6178   |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.19.1
- Tokenizers 0.19.1