File size: 2,307 Bytes
cfa7f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Small Tr - CV 43h large batch
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: tr
      split: None
      args: 'config: tr, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 21.060292928385298
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Tr - CV 43h large batch

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2890
- Wer: 21.0603

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.192         | 0.73  | 500  | 0.2638          | 22.1026 |
| 0.1238        | 1.46  | 1000 | 0.2492          | 21.2921 |
| 0.0663        | 2.19  | 1500 | 0.2483          | 20.7799 |
| 0.0656        | 2.92  | 2000 | 0.2445          | 20.3073 |
| 0.0391        | 3.65  | 2500 | 0.2575          | 21.1466 |
| 0.0203        | 4.38  | 3000 | 0.2744          | 20.9956 |
| 0.0125        | 5.11  | 3500 | 0.2841          | 20.9597 |
| 0.0096        | 5.84  | 4000 | 0.2890          | 21.0603 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2