File size: 2,882 Bytes
1bece31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
tags:
- Text-to-Image
- FLUX
- Stable Diffusion
pipeline_tag: text-to-image
---
<div style="display: flex; justify-content: center; align-items: center;">
<img src="./images/images_alibaba.png" alt="alibaba" style="width: 20%; height: auto; margin-right: 5%;">
<img src="./images/images_alimama.png" alt="alimama" style="width: 20%; height: auto;">
</div>
本仓库包含了由阿里妈妈创意团队开发的基于[FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)模型的8步蒸馏版。
# 介绍
该模型是基于FLUX.1-dev模型的8步蒸馏版lora。我们使用特殊设计的判别器来提高蒸馏质量。该模型可以用于T2I、Inpainting controlnet和其他FLUX相关模型。建议guidance_scale=3.5和lora_scale=1。我们的更低步数的版本将在后续发布。
- Text-to-Image.
![](./images/T2I.png)
- 配合[alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta](https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta)。我们模型可以很好地适配Inpainting controlnet,并与原始输出保持相似的结果。
![](./images/inpaint.png)
# 使用指南
## diffusers
该模型可以直接与diffusers一起使用
```python
import torch
from diffusers.pipelines import FluxPipeline
model_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
pipe = FluxPipeline.from_pretrained(
model_id,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()
prompt = "A DSLR photo of a shiny VW van that has a cityscape painted on it. A smiling sloth stands on grass in front of the van and is wearing a leather jacket, a cowboy hat, a kilt and a bowtie. The sloth is holding a quarterstaff and a big book."
image = pipe(
prompt=prompt,
guidance_scale=3.5,
height=1024,
width=1024,
num_inference_steps=8,
max_sequence_length=512).images[0]
```
## comfyui
- 文生图加速链路: [点击这里](./workflows/t2I_flux_turbo.json)
- Inpainting controlnet 加速链路: [点击这里](./workflows/alimama_flux_inpainting_turbo_8step.json)
# 训练细节
该模型在1M公开数据集和内部源图片上进行训练,这些数据美学评分6.3+而且分辨率大于800。我们使用对抗训练来提高质量,我们的方法将原始FLUX.1-dev transformer固定为判别器的特征提取器,并在每个transformer层中添加判别头网络。在训练期间,我们将guidance scale固定为3.5,并使用时间偏移量3。
混合精度: bf16
学习率: 2e-5
批大小: 64
训练分辨率: 1024x1024 |