File size: 1,676 Bytes
59e1725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
language: pl
tags:
- herbert
license: cc-by-sa-4.0
---
# HerBERT
**[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish Corpora
using MLM and SSO objectives with dynamic masking of whole words.
Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9.
## Tokenizer
The training dataset was tokenized into subwords using ``CharBPETokenizer`` a character level byte-pair encoding with
a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library.
We kindly encourage you to use the **Fast** version of tokenizer, namely ``HerbertTokenizerFast``.
## HerBERT usage
Example code:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased")
model = AutoModel.from_pretrained("allegro/herbert-large-cased")
output = model(
**tokenizer.batch_encode_plus(
[
(
"A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.",
"A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy."
)
],
padding='longest',
add_special_tokens=True,
return_tensors='pt'
)
)
```
## License
CC BY-SA 4.0
## Authors
Model was trained by **Allegro Machine Learning Research** team.
You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
|