soldni commited on
Commit
331cacf
·
verified ·
1 Parent(s): 130d2f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -3
README.md CHANGED
@@ -1,3 +1,123 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - openai/clip-vit-large-patch14-336
7
+ - Qwen/Qwen2-7B
8
+ pipeline_tag: image-text-to-text
9
+ tags:
10
+ - multimodal
11
+ ---
12
+
13
+ <img src="molmo_logo.png" alt="Logo for the Molmo Project" style="width: auto; height: 50px;">
14
+
15
+ # Molmo 7B-D
16
+
17
+ Molmo is a family of open vision-language models developed by the Allen Institute for AI.
18
+ Molmo models are trained on PixMo, a dataset of 1 million, highly-curated image-text pairs.
19
+ It has state-of-the-art performance among multimodal models with a similar size while being fully open-source.
20
+ You can find all models in the Molmo family [here](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19).
21
+ **Learn more** about the Molmo family [in our announcement blog post](https://molmo.allenai.org/blog).
22
+
23
+ Molmo 7B-O is based on [OLMo-7B-1124]() (to be released) and uses [OpenAI CLIP](https://huggingface.co/openai/clip-vit-large-patch14-336) as vision backbone.
24
+ It performs comfortably between GPT-4V and GPT-4o on both academic benchmarks and human evaluation.
25
+
26
+ This checkpoint is a **preview** of the Molmo release. All artifacts used in creating Molmo (PixMo dataset, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility.
27
+
28
+ [**Sign up here**](https://docs.google.com/forms/d/e/1FAIpQLSdML1MhNNBDsCHpgWG65Oydg2SjZzVasyqlP08nBrWjZp_c7A/viewform) to be the first to know when artifacts are released.
29
+
30
+ ## Quick Start
31
+
32
+ To run Molmo, first install dependencies:
33
+
34
+ ```bash
35
+ pip install einops tensorflow torchvision
36
+ ```
37
+
38
+ Then, follow these steps:
39
+
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
42
+ from PIL import Image
43
+ import requests
44
+
45
+ # load the processor
46
+ processor = AutoProcessor.from_pretrained(
47
+ 'allenai/Molmo-7B-O-0924',
48
+ trust_remote_code=True,
49
+ torch_dtype='auto',
50
+ device_map='auto'
51
+ )
52
+
53
+ # load the model
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ 'allenai/Molmo-7B-O-0924',
56
+ trust_remote_code=True,
57
+ torch_dtype='auto',
58
+ device_map='auto'
59
+ )
60
+
61
+ # process the image and text
62
+ inputs = processor.process(
63
+ images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
64
+ text="Describe this image."
65
+ )
66
+
67
+ # move inputs to the correct device and make a batch of size 1
68
+ inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
69
+
70
+ # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
71
+ output = model.generate_from_batch(
72
+ inputs,
73
+ GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
74
+ tokenizer=processor.tokenizer
75
+ )
76
+
77
+ # only get generated tokens; decode them to text
78
+ generated_tokens = output[0,inputs['input_ids'].size(1):]
79
+ generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
80
+
81
+ # print the generated text
82
+ print(generated_text)
83
+
84
+ # >>> This photograph captures an adorable black Labrador puppy sitting on a weathered
85
+ # wooden deck. The deck's planks, which are a mix of light and dark brown with ...
86
+ ```
87
+
88
+ ## Evaluations
89
+
90
+ | Model | Average Score on 11 Academic Benchmarks | Human Preference Elo Rating |
91
+ |-----------------------------|-----------------------------------------|-----------------------------|
92
+ | Molmo 72B | 81.2 | 1077 |
93
+ | Molmo 7B-D | 77.3 | 1056 |
94
+ | **Molmo 7B-O (this model)** | **74.6** | **1051** |
95
+ | MolmoE 1B | 68.6 | 1032 |
96
+ | GPT-4o | 78.5 | 1079 |
97
+ | GPT-4V | 71.1 | 1041 |
98
+ | Gemini 1.5 Pro | 78.3 | 1074 |
99
+ | Gemini 1.5 Flash | 75.1 | 1054 |
100
+ | Claude 3.5 Sonnet | 76.7 | 1069 |
101
+ | Claude 3 Opus | 66.4 | 971 |
102
+ | Claude 3 Haiku | 65.3 | 999 |
103
+ | Qwen VL2 72B | 79.4 | 1037 |
104
+ | Qwen VL2 7B | 73.7 | 1025 |
105
+ | Intern VL2 LLAMA 76B | 77.1 | 1018 |
106
+ | Intern VL2 8B | 69.4 | 953 |
107
+ | Pixtral 12B | 69.5 | 1016 |
108
+ | Phi3.5-Vision 4B | 59.7 | 982 |
109
+ | PaliGemma 3B | 50.0 | 937 |
110
+ | LLAVA OneVision 72B | 76.6 | 1051 |
111
+ | LLAVA OneVision 7B | 72.0 | 1024 |
112
+ | Cambrian-1 34B | 66.8 | 953 |
113
+ | Cambrian-1 8B | 63.4 | 952 |
114
+ | xGen - MM - Interleave 4B | 59.5 | 979 |
115
+ | LLAVA-1.5 13B | 43.9 | 960 |
116
+ | LLAVA-1.5 7B | 40.7 | 951 |
117
+
118
+ *Benchmarks: AI2D test, ChartQA test, VQA v2.0 test, DocQA test, InfographicVQA test, TextVQA val, RealWorldQA, MMMU val, MathVista testmini, CountBenchQA, Flickr Count (we collected this new dataset that is significantly harder than CountBenchQA).*
119
+
120
+ ## License and Use
121
+
122
+ This model is licensed under Apache 2.0. It is intended for research and educational use.
123
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).