File size: 9,366 Bytes
bf9471a cf93761 bf9471a cf93761 bf9471a de2d4e3 c669df4 de2d4e3 99e436d de2d4e3 bf9471a 3a5c85b bf9471a 99e436d bf9471a de2d4e3 bf9471a 84d8c7c bf9471a 84d8c7c bf9471a 6568974 bf9471a de2d4e3 bf9471a 99e436d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
base_model:
- allenai/OLMo-2-1124-13B-Instruct-RLVR2
library_name: transformers
datasets:
- allenai/RLVR-MATH
---
<img alt="OLMo Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmo2/olmo.png" width="242px">
# OLMo-2-1124-13B-Instruct
## NOTE: 1/3/2025 UPDATE:
Upon the initial release of OLMo-2 models, we realized the post-trained models did not share the pre-tokenization logic that the base models use. As a result, we have trained new post-trained models. The new models are available under the same names as the original models, but we have made the old models available with a postfix "-preview". See [OLMo 2 Preview Post-trained Models](https://huggingface.co/collections/allenai/olmo-2-preview-post-trained-models-6762f662c660962e52de7c96) for the colleciton of the legacy models.
## Release Documentation
OLMo 2 13B Instruct November 2024 is post-trained variant of the [OLMo-2 13B November 2024](https://huggingface.co/allenai/OLMo2-13B-1124) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tülu 3 dataset](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture and further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix), and finally RLVR training using [this data](https://huggingface.co/datasets/allenai/RLVR-GSM).
Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
Check out the [OLMo 2 paper](https://arxiv.org/abs/2501.00656) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!
OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
The core models released in this batch include the following:
| **Stage** | **OLMo 2 7B** | **OLMo 2 13B** |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| **Base Model** | [allenai/OLMo2-7B-1124](https://huggingface.co/allenai/OLMo2-7B-1124) | [allenai/OLMo-2-13B-1124](https://huggingface.co/allenai/OLMo-2-13B-1124) |
| **SFT** | [allenai/OLMo-2-1124-7B-SFT](https://huggingface.co/allenai/OLMo-2-1124-7B-SFT) | [allenai/OLMo-2-1124-13B-SFT](https://huggingface.co/allenai/OLMo-2-1124-13B-SFT) |
| **DPO** | [allenai/OLMo-2-1124-7B-DPO](https://huggingface.co/allenai/OLMo-2-1124-7B-DPO) | [allenai/OLMo-2-1124-13B-DPO](https://huggingface.co/allenai/OLMo-2-1124-13B-DPO) |
| **Final Models (RLVR)** | [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) | [allenai/OLMo-2-1124-13B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct) |
| **Reward Model (RM)**| [allenai/OLMo-2-1124-7B-RM](https://huggingface.co/allenai/OLMo-2-1124-7B-RM) | [allenai/OLMo-2-1124-13B-RM](https://huggingface.co/allenai/OLMo-2-1124-13B-RM) |
## Model description
- **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Apache 2.0
- **Finetuned from model:** allenai/OLMo-2-13B-1124-RLVR2
### Model Sources
- **Project Page:** https://allenai.org/olmo
- **Repositories:**
- Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
- Evaluation code: https://github.com/allenai/olmes
- Further fine-tuning code: https://github.com/allenai/open-instruct
- **Paper:** https://arxiv.org/abs/2501.00656
- **Demo:** https://playground.allenai.org/
## Installation
OLMo 2 will be supported in the next version of Transformers, and you need to install it from the main branch using:
```bash
pip install --upgrade git+https://github.com/huggingface/transformers.git
```
## Using the model
### Loading with HuggingFace
To load the model with HuggingFace, use the following snippet:
```
from transformers import AutoModelForCausalLM
olmo_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-13B-Instruct")
```
### Chat template
The chat template for our models is formatted as:
```
<|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
Or with new lines expanded:
```
<|endoftext|><|user|>
How are you doing?
<|assistant|>
I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
```
It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
### System prompt
In Ai2 demos, we use this system prompt by default:
```
You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
```
The model has not been trained with a specific system prompt in mind.
### Bias, Risks, and Limitations
The OLMo-2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
See the Falcon 180B model card for an example of this.
## Performance
| Model | Average | AlpacaEval | BBH | DROP | GSM8k | IFEval | MATH | MMLU | Safety | PopQA | TruthQA |
|-------|---------|------------|-----|------|--------|---------|------|-------|---------|-------|---------|
| **Open weights models** |
| Gemma-2-9B-it | 51.9 | 43.7 | 2.5 | 58.8 | 79.7 | 69.9 | 29.8 | 69.1 | 75.5 | 28.3 | 61.4 |
| Ministral-8B-Instruct | 52.1 | 31.4 | 56.2 | 56.2 | 80.0 | 56.4 | 40.0 | 68.5 | 56.2 | 20.2 | 55.5 |
| Mistral-Nemo-Instruct-2407 | 50.9 | 45.8 | 54.6 | 23.6 | 81.4 | 64.5 | 31.9 | 70.0 | 52.7 | 26.9 | 57.7 |
| Qwen-2.5-7B-Instruct | 57.1 | 29.7 | 25.3 | 54.4 | 83.8 | 74.7 | 69.9 | 76.6 | 75.0 | 18.1 | 63.1 |
| Llama-3.1-8B-Instruct | 58.9 | 25.8 | 69.7 | 61.7 | 83.4 | 80.6 | 42.5 | 71.3 | 70.2 | 28.4 | 55.1 |
| Tülu 3 8B | 60.4 | 34.0 | 66.0 | 62.6 | 87.6 | 82.4 | 43.7 | 68.2 | 75.4 | 29.1 | 55.0 |
| Qwen-2.5-14B-Instruct | 60.8 | 34.6 | 34.0 | 50.5 | 83.9 | 82.4 | 70.6 | 81.1 | 79.3 | 21.1 | 70.8 |
| **Fully open models** |
| OLMo-7B-Instruct | 28.2 | 5.2 | 35.3 | 30.7 | 14.3 | 32.2 | 2.1 | 46.3 | 54.0 | 17.1 | 44.5 |
| OLMo-7B-0424-Instruct | 33.1 | 8.5 | 34.4 | 47.9 | 23.2 | 39.2 | 5.2 | 48.9 | 49.3 | 18.9 | 55.2 |
| OLMoE-1B-7B-0924-Instruct | 35.5 | 8.5 | 37.2 | 34.3 | 47.2 | 46.2 | 8.4 | 51.6 | 51.6 | 20.6 | 49.1 |
| MAP-Neo-7B-Instruct | 42.9 | 17.6 | 26.4 | 48.2 | 69.4 | 35.9 | 31.5 | 56.5 | 73.7 | 18.4 | 51.6 |
| *OLMo-2-7B-SFT* | 50.2 | 10.2 | 49.7 | 59.6 | 74.6 | 66.9 | 25.3 | 61.1 | 82.1 | 23.6 | 48.6 |
| *OLMo-2-7B-DPO* | 54.2 | 27.9 | 46.7 | 60.2 | 82.6 | 73.0 | 30.3 | 60.8 | 81.0 | 23.5 | 56.0 |
| *OLMo-2-13B-SFT* | 55.3 | 11.5 | 59.6 | 71.3 | 76.3 | 68.6 | 29.5 | 68.0 | 82.3 | 29.4 | 57.1 |
| *OLMo-2-13B-DPO* | 60.6 | 38.3 | 57.9 | 71.5 | 82.3 | 80.2 | 35.2 | 67.9 | 79.7 | 29.0 | 63.9 |
| **OLMo-2-7B-1124–Instruct** | 54.8 | 29.1 | 46.6 | 60.5 | 85.1 | 72.3 | 32.5 | 61.3 | 80.6 | 23.2 | 56.5 |
| **OLMo-2-13B-1124-Instruct** | 62.0 | 39.5 | 58.8 | 71.5 | 87.4 | 82.6 | 39.2 | 68.5 | 79.1 | 28.8 | 64.3 |
## License and use
OLMo 2 is licensed under the Apache 2.0 license.
OLMo 2 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
This model has been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms: [Gemma Terms of Use](https://ai.google.dev/gemma/terms).
## Citation
```bibtex
@article{olmo20242olmo2furious,
title={2 OLMo 2 Furious},
author={Team OLMo and Pete Walsh and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Shane Arora and Akshita Bhagia and Yuling Gu and Shengyi Huang and Matt Jordan and Nathan Lambert and Dustin Schwenk and Oyvind Tafjord and Taira Anderson and David Atkinson and Faeze Brahman and Christopher Clark and Pradeep Dasigi and Nouha Dziri and Michal Guerquin and Hamish Ivison and Pang Wei Koh and Jiacheng Liu and Saumya Malik and William Merrill and Lester James V. Miranda and Jacob Morrison and Tyler Murray and Crystal Nam and Valentina Pyatkin and Aman Rangapur and Michael Schmitz and Sam Skjonsberg and David Wadden and Christopher Wilhelm and Michael Wilson and Luke Zettlemoyer and Ali Farhadi and Noah A. Smith and Hannaneh Hajishirzi},
year={2024},
eprint={2501.00656},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.00656},
}
```
|