hamishivi commited on
Commit
44caa36
·
1 Parent(s): 96dab78

First stab at readme

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-3.0
3
+ datasets:
4
+ - databricks/databricks-dolly-15k
5
+ language:
6
+ - en
7
+ ---
8
+
9
+ # Open-Instruct Dolly 7B
10
+
11
+ This model is a 7B LLaMa model finetuned on the Dolly dataset. *please note this is a model diff - see below for usage instructions*.
12
+
13
+ This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](arxiv.org/abs/xxxx).
14
+ The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
15
+
16
+ ## Usage
17
+
18
+ We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
19
+ [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
20
+
21
+ Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
22
+ and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
23
+
24
+ Then, run:
25
+ ```bash
26
+ python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
27
+ ```
28
+
29
+ And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
30
+
31
+ ## Input Format
32
+
33
+ The model is trained to use the following format:
34
+ ```
35
+ <|user|>
36
+ Your message here!
37
+ <|assistant|>
38
+ ```
39
+
40
+ For best results, format all inputs in this manner.
41
+
42
+ ## Performance
43
+
44
+ Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](arxiv.org/abs/xxxx):
45
+
46
+ | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
47
+ |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
48
+ | 0.380 | 0.358 | 0.050 | 0.070 | 0.272 | 0.244 | 43.569 | 8.718 | 0.111 | 0.221 | 12.67 | 20.7 |
49
+
50
+
51
+ If you use this model, please cite our work and the original dataset:
52
+
53
+ ```
54
+ @article{camelevaluation,
55
+ title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
56
+ author={Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hannaneh Hajishirzi},
57
+ year={2023}
58
+ }
59
+ ```
60
+
61
+ ```
62
+ @misc{dolly,
63
+ author = {Databricks},
64
+ title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
65
+ year = {2023},
66
+ publisher = {GitHub},
67
+ journal = {GitHub repository},
68
+ howpublished = {Blog post},
69
+ url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
70
+ }
71
+ ```
72
+
73
+
74
+