alvanlii commited on
Commit
d7d406e
·
1 Parent(s): 1806b43

Added datasets a new training data

Browse files
Files changed (1) hide show
  1. README.md +29 -5
README.md CHANGED
@@ -20,9 +20,9 @@ model-index:
20
  split: test
21
  args: zh-HK
22
  metrics:
23
- - name: Wer
24
- type: wer
25
- value: 56.0439
26
  ---
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
@@ -36,10 +36,34 @@ More information needed
36
  ## Intended uses & limitations
37
  More information needed
38
  ## Training and evaluation data
39
- More information needed
 
 
 
 
40
  ## Training procedure
41
 
42
- ### Training hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
45
  ### Framework versions
 
20
  split: test
21
  args: zh-HK
22
  metrics:
23
+ - name: Cer
24
+ type: cer
25
+ value: 11.760
26
  ---
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
 
36
  ## Intended uses & limitations
37
  More information needed
38
  ## Training and evaluation data
39
+ For training, three datasets were used:
40
+ - Common Voice 11 Canto Train Set
41
+ - CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906.
42
+ - Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf
43
+
44
  ## Training procedure
45
 
46
+ ## Training Hyperparameters
47
+ - learning_rate: 1e-5
48
+ - train_batch_size: 16 (on 2 GPUs)
49
+ - eval_batch_size: 8
50
+ - gradient_accumulation_steps: 2
51
+ - total_train_batch_size: 16x2x2=64
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_steps: 500
55
+ - training_steps: 5000
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ## Training Results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
61
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
62
+ | 0.1106 | 0.66 | 1000 | 0.3294 | 14.638 |
63
+ | 0.0546 | 1.33 | 2000 | 0.2887 | 12.119 |
64
+ | 0.0293 | 2.01 | 3000 | 0.2727 | 11.646 |
65
+ | 0.0214 | 2.66 | 4000 | 0.2741 | 11.760 |
66
+ | xx | xx | 5000 | xx | xx |
67
 
68
 
69
  ### Framework versions