File size: 2,931 Bytes
229def0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetuned-barkley
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# beit-base-patch16-224-pt22k-ft22k-finetuned-barkley

This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0079
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
- Top1 Accuracy: 1.0
- Error Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy | Top1 Accuracy | Error Rate |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|

| 1.5547        | 1.0   | 38   | 1.4018          | 0.5683    | 0.4539 | 0.4240 | 0.4728   | 0.4539        | 0.5272     |

| 1.1732        | 2.0   | 76   | 0.9193          | 0.8095    | 0.7961 | 0.7985 | 0.8077   | 0.7961        | 0.1923     |

| 0.6764        | 3.0   | 114  | 0.3644          | 0.9488    | 0.9474 | 0.9470 | 0.9483   | 0.9474        | 0.0517     |

| 0.2566        | 4.0   | 152  | 0.0871          | 0.9937    | 0.9934 | 0.9934 | 0.9944   | 0.9934        | 0.0056     |

| 0.1014        | 5.0   | 190  | 0.0533          | 0.9809    | 0.9803 | 0.9802 | 0.9811   | 0.9803        | 0.0189     |

| 0.0538        | 6.0   | 228  | 0.0208          | 1.0       | 1.0    | 1.0    | 1.0      | 1.0           | 0.0        |

| 0.0304        | 7.0   | 266  | 0.0079          | 1.0       | 1.0    | 1.0    | 1.0      | 1.0           | 0.0        |

| 0.0571        | 8.0   | 304  | 0.0088          | 1.0       | 1.0    | 1.0    | 1.0      | 1.0           | 0.0        |

| 0.0608        | 9.0   | 342  | 0.0226          | 0.9936    | 0.9934 | 0.9934 | 0.9933   | 0.9934        | 0.0067     |





### Framework versions



- Transformers 4.44.2

- Pytorch 2.3.1+cu121

- Datasets 3.0.1

- Tokenizers 0.19.1