alyzbane commited on
Commit
30ac9c0
·
verified ·
1 Parent(s): 61c02c0

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ integrated_gradients_grid.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -4,8 +4,6 @@ license: apache-2.0
4
  base_model: google/vit-base-patch16-224
5
  tags:
6
  - generated_from_trainer
7
- datasets:
8
- - imagefolder
9
  metrics:
10
  - precision
11
  - recall
@@ -13,29 +11,7 @@ metrics:
13
  - accuracy
14
  model-index:
15
  - name: vit-base-patch16-224-finetuned-barkley
16
- results:
17
- - task:
18
- name: Image Classification
19
- type: image-classification
20
- dataset:
21
- name: imagefolder
22
- type: imagefolder
23
- config: default
24
- split: train
25
- args: default
26
- metrics:
27
- - name: Precision
28
- type: precision
29
- value: 0.9936145510835913
30
- - name: Recall
31
- type: recall
32
- value: 0.993421052631579
33
- - name: F1
34
- type: f1
35
- value: 0.993419541966282
36
- - name: Accuracy
37
- type: accuracy
38
- value: 0.9939393939393939
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,15 +19,15 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # vit-base-patch16-224-finetuned-barkley
45
 
46
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0340
49
- - Precision: 0.9936
50
- - Recall: 0.9934
51
- - F1: 0.9934
52
- - Accuracy: 0.9939
53
- - Top1 Accuracy: 0.9934
54
- - Error Rate: 0.0061
55
 
56
  ## Model description
57
 
@@ -70,10 +46,12 @@ More information needed
70
  ### Training hyperparameters
71
 
72
  The following hyperparameters were used during training:
73
- - learning_rate: 0.0002
74
- - train_batch_size: 32
75
- - eval_batch_size: 32
76
  - seed: 42
 
 
77
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
  - lr_scheduler_type: linear
79
  - lr_scheduler_warmup_ratio: 0.1
@@ -84,25 +62,28 @@ The following hyperparameters were used during training:
84
 
85
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
86
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
87
- | 1.7463 | 1.0 | 38 | 1.7013 | 0.2143 | 0.2171 | 0.1930 | 0.2186 | 0.2171 | 0.7814 |
88
- | 1.5581 | 2.0 | 76 | 1.4481 | 0.3512 | 0.3487 | 0.3287 | 0.3682 | 0.3487 | 0.6318 |
89
- | 1.2665 | 3.0 | 114 | 1.0585 | 0.7397 | 0.7237 | 0.7274 | 0.7294 | 0.7237 | 0.2706 |
90
- | 0.8572 | 4.0 | 152 | 0.5839 | 0.9467 | 0.9408 | 0.9417 | 0.9449 | 0.9408 | 0.0551 |
91
- | 0.4337 | 5.0 | 190 | 0.2339 | 0.9820 | 0.9803 | 0.9802 | 0.9818 | 0.9803 | 0.0182 |
92
- | 0.1569 | 6.0 | 228 | 0.0949 | 0.9739 | 0.9737 | 0.9735 | 0.9756 | 0.9737 | 0.0244 |
93
- | 0.0577 | 7.0 | 266 | 0.0434 | 0.9872 | 0.9868 | 0.9867 | 0.9879 | 0.9868 | 0.0121 |
94
- | 0.0172 | 8.0 | 304 | 0.0380 | 0.9870 | 0.9868 | 0.9868 | 0.9877 | 0.9868 | 0.0123 |
95
- | 0.0208 | 9.0 | 342 | 0.0530 | 0.9876 | 0.9868 | 0.9868 | 0.9879 | 0.9868 | 0.0121 |
96
- | 0.0071 | 10.0 | 380 | 0.0987 | 0.9716 | 0.9671 | 0.9669 | 0.9697 | 0.9671 | 0.0303 |
97
- | 0.0062 | 11.0 | 418 | 0.0340 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
98
- | 0.0165 | 12.0 | 456 | 0.0649 | 0.9809 | 0.9803 | 0.9799 | 0.9818 | 0.9803 | 0.0182 |
99
- | 0.0057 | 13.0 | 494 | 0.0375 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
100
- | 0.0038 | 14.0 | 532 | 0.0377 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
 
 
 
101
 
102
 
103
  ### Framework versions
104
 
105
- - Transformers 4.45.2
106
  - Pytorch 2.3.1+cu121
107
  - Datasets 3.0.1
108
- - Tokenizers 0.20.1
 
4
  base_model: google/vit-base-patch16-224
5
  tags:
6
  - generated_from_trainer
 
 
7
  metrics:
8
  - precision
9
  - recall
 
11
  - accuracy
12
  model-index:
13
  - name: vit-base-patch16-224-finetuned-barkley
14
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
19
 
20
  # vit-base-patch16-224-finetuned-barkley
21
 
22
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.0036
25
+ - Precision: 1.0
26
+ - Recall: 1.0
27
+ - F1: 1.0
28
+ - Accuracy: 1.0
29
+ - Top1 Accuracy: 1.0
30
+ - Error Rate: 0.0
31
 
32
  ## Model description
33
 
 
46
  ### Training hyperparameters
47
 
48
  The following hyperparameters were used during training:
49
+ - learning_rate: 0.0005
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
  - seed: 42
53
+ - gradient_accumulation_steps: 4
54
+ - total_train_batch_size: 32
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: linear
57
  - lr_scheduler_warmup_ratio: 0.1
 
62
 
63
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
64
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
65
+ | 1.6093 | 1.0 | 38 | 1.4340 | 0.4769 | 0.4342 | 0.4066 | 0.4149 | 0.4342 | 0.5851 |
66
+ | 1.2908 | 2.0 | 76 | 1.1747 | 0.6587 | 0.6118 | 0.6160 | 0.6161 | 0.6118 | 0.3839 |
67
+ | 1.0409 | 3.0 | 114 | 0.9174 | 0.7382 | 0.7303 | 0.7293 | 0.7425 | 0.7303 | 0.2575 |
68
+ | 0.781 | 4.0 | 152 | 0.6528 | 0.8632 | 0.8618 | 0.8622 | 0.8650 | 0.8618 | 0.1350 |
69
+ | 0.5429 | 5.0 | 190 | 0.4112 | 0.9417 | 0.9408 | 0.9405 | 0.9443 | 0.9408 | 0.0557 |
70
+ | 0.328 | 6.0 | 228 | 0.2229 | 0.9809 | 0.9803 | 0.9802 | 0.9811 | 0.9803 | 0.0189 |
71
+ | 0.1837 | 7.0 | 266 | 0.1181 | 0.9871 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
72
+ | 0.1131 | 8.0 | 304 | 0.0680 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
73
+ | 0.0526 | 9.0 | 342 | 0.0387 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
74
+ | 0.0283 | 10.0 | 380 | 0.0328 | 0.9873 | 0.9868 | 0.9869 | 0.9878 | 0.9868 | 0.0122 |
75
+ | 0.019 | 11.0 | 418 | 0.0224 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
76
+ | 0.0148 | 12.0 | 456 | 0.0201 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
77
+ | 0.0095 | 13.0 | 494 | 0.0396 | 0.9871 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
78
+ | 0.007 | 14.0 | 532 | 0.0048 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
79
+ | 0.011 | 15.0 | 570 | 0.0036 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
80
+ | 0.0071 | 16.0 | 608 | 0.0092 | 0.9936 | 0.9934 | 0.9934 | 0.9941 | 0.9934 | 0.0059 |
81
+ | 0.0103 | 17.0 | 646 | 0.0148 | 0.9936 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
82
 
83
 
84
  ### Framework versions
85
 
86
+ - Transformers 4.44.2
87
  - Pytorch 2.3.1+cu121
88
  - Datasets 3.0.1
89
+ - Tokenizers 0.19.1
all_results.json CHANGED
@@ -1,19 +1,18 @@
1
  {
2
- "epoch": 14.0,
3
- "eval_accuracy": 0.9939393939393939,
4
- "eval_error_rate": 0.0060606060606061,
5
- "eval_f1": 0.993419541966282,
6
- "eval_loss": 0.03395003080368042,
7
- "eval_model_preparation_time": 0.008,
8
- "eval_precision": 0.9936145510835913,
9
- "eval_recall": 0.993421052631579,
10
- "eval_runtime": 62.4572,
11
- "eval_samples_per_second": 2.434,
12
- "eval_steps_per_second": 0.08,
13
- "eval_top1_accuracy": 0.993421052631579,
14
- "total_flos": 1.319259102551212e+18,
15
- "train_loss": 0.4395476876008779,
16
- "train_runtime": 10817.4486,
17
- "train_samples_per_second": 3.372,
18
- "train_steps_per_second": 0.105
19
  }
 
1
  {
2
+ "epoch": 17.0,
3
+ "eval_accuracy": 1.0,
4
+ "eval_error_rate": 0.0,
5
+ "eval_f1": 1.0,
6
+ "eval_loss": 0.003647729055956006,
7
+ "eval_precision": 1.0,
8
+ "eval_recall": 1.0,
9
+ "eval_runtime": 63.8492,
10
+ "eval_samples_per_second": 2.381,
11
+ "eval_steps_per_second": 0.298,
12
+ "eval_top1_accuracy": 1.0,
13
+ "total_flos": 1.601957481669329e+18,
14
+ "train_loss": 0.3558414801263219,
15
+ "train_runtime": 14288.2591,
16
+ "train_samples_per_second": 2.553,
17
+ "train_steps_per_second": 0.08
 
18
  }
classification_report.png CHANGED
config.json CHANGED
@@ -34,5 +34,5 @@
34
  "problem_type": "single_label_classification",
35
  "qkv_bias": true,
36
  "torch_dtype": "float32",
37
- "transformers_version": "4.45.2"
38
  }
 
34
  "problem_type": "single_label_classification",
35
  "qkv_bias": true,
36
  "torch_dtype": "float32",
37
+ "transformers_version": "4.44.2"
38
  }
confusion_matrix.png CHANGED
eval_results.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
- "epoch": 14.0,
3
- "eval_accuracy": 0.9939393939393939,
4
- "eval_error_rate": 0.0060606060606061,
5
- "eval_f1": 0.993419541966282,
6
- "eval_loss": 0.03395003080368042,
7
- "eval_precision": 0.9936145510835913,
8
- "eval_recall": 0.993421052631579,
9
- "eval_runtime": 62.4572,
10
- "eval_samples_per_second": 2.434,
11
- "eval_steps_per_second": 0.08,
12
- "eval_top1_accuracy": 0.993421052631579
13
  }
 
1
  {
2
+ "epoch": 17.0,
3
+ "eval_accuracy": 1.0,
4
+ "eval_error_rate": 0.0,
5
+ "eval_f1": 1.0,
6
+ "eval_loss": 0.003647729055956006,
7
+ "eval_precision": 1.0,
8
+ "eval_recall": 1.0,
9
+ "eval_runtime": 63.8492,
10
+ "eval_samples_per_second": 2.381,
11
+ "eval_steps_per_second": 0.298,
12
+ "eval_top1_accuracy": 1.0
13
  }
integrated_gradients_grid.jpg ADDED

Git LFS Details

  • SHA256: 15fb04729ca3b08851f6f930635684bb18da3de322c96dc2e98a3df1f7ae41b9
  • Pointer size: 132 Bytes
  • Size of remote file: 1.71 MB
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d8b7d00aba59d6176b6560b26fd8fafe32180a89f3d001465ff90a2d2a48ba0
3
  size 343233204
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:095e519b8fe95230c057af31cba64f9087271dc9aea96438255c92d1b61d4810
3
  size 343233204
train_and_eval.jpg CHANGED
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 14.0,
3
- "total_flos": 1.319259102551212e+18,
4
- "train_loss": 0.4395476876008779,
5
- "train_runtime": 10817.4486,
6
- "train_samples_per_second": 3.372,
7
- "train_steps_per_second": 0.105
8
  }
 
1
  {
2
+ "epoch": 17.0,
3
+ "total_flos": 1.601957481669329e+18,
4
+ "train_loss": 0.3558414801263219,
5
+ "train_runtime": 14288.2591,
6
+ "train_samples_per_second": 2.553,
7
+ "train_steps_per_second": 0.08
8
  }
trainer_state.json CHANGED
@@ -1,374 +1,449 @@
1
  {
2
- "best_metric": 0.03395003080368042,
3
- "best_model_checkpoint": "vit-base-patch16-224-finetuned-barkley\\checkpoint-418",
4
- "epoch": 14.0,
5
  "eval_steps": 500,
6
- "global_step": 532,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "epoch": 1.0,
13
- "train_accuracy": 0.21134868421052633
14
  },
15
  {
16
  "epoch": 1.0,
17
- "grad_norm": 7.52012300491333,
18
- "learning_rate": 1.1659108139509125e-06,
19
- "loss": 1.7463,
20
  "step": 38
21
  },
22
  {
23
  "epoch": 1.0,
24
- "eval_accuracy": 0.21856060606060607,
25
- "eval_error_rate": 0.781439393939394,
26
- "eval_f1": 0.19295495348680888,
27
- "eval_loss": 1.701319694519043,
28
- "eval_precision": 0.2142622862160236,
29
- "eval_recall": 0.21710526315789475,
30
- "eval_runtime": 46.6936,
31
- "eval_samples_per_second": 3.255,
32
- "eval_steps_per_second": 0.107,
33
- "eval_top1_accuracy": 0.21710526315789475,
34
  "step": 38
35
  },
36
  {
37
  "epoch": 2.0,
38
- "train_accuracy": 0.30409356725146197
39
  },
40
  {
41
  "epoch": 2.0,
42
- "grad_norm": 6.449554920196533,
43
- "learning_rate": 2.23574935501902e-06,
44
- "loss": 1.5581,
45
  "step": 76
46
  },
47
  {
48
  "epoch": 2.0,
49
- "eval_accuracy": 0.36818181818181817,
50
- "eval_error_rate": 0.6318181818181818,
51
- "eval_f1": 0.328691576484973,
52
- "eval_loss": 1.4481072425842285,
53
- "eval_precision": 0.3511731503217571,
54
- "eval_recall": 0.34868421052631576,
55
- "eval_runtime": 63.7667,
56
- "eval_samples_per_second": 2.384,
57
- "eval_steps_per_second": 0.078,
58
- "eval_top1_accuracy": 0.34868421052631576,
59
  "step": 76
60
  },
61
  {
62
  "epoch": 3.0,
63
- "train_accuracy": 0.5197368421052632
64
  },
65
  {
66
  "epoch": 3.0,
67
- "grad_norm": 5.767495155334473,
68
- "learning_rate": 3.927960312504679e-06,
69
- "loss": 1.2665,
70
  "step": 114
71
  },
72
  {
73
  "epoch": 3.0,
74
- "eval_accuracy": 0.7293560606060607,
75
- "eval_error_rate": 0.27064393939393927,
76
- "eval_f1": 0.7273905235235443,
77
- "eval_loss": 1.0585086345672607,
78
- "eval_precision": 0.7397410035407469,
79
- "eval_recall": 0.7236842105263158,
80
- "eval_runtime": 47.8118,
81
- "eval_samples_per_second": 3.179,
82
- "eval_steps_per_second": 0.105,
83
- "eval_top1_accuracy": 0.7236842105263158,
84
  "step": 114
85
  },
86
  {
87
  "epoch": 4.0,
88
- "train_accuracy": 0.8062865497076024
89
  },
90
  {
91
  "epoch": 4.0,
92
- "grad_norm": 12.979792594909668,
93
- "learning_rate": 6.113544042901594e-06,
94
- "loss": 0.8572,
95
  "step": 152
96
  },
97
  {
98
  "epoch": 4.0,
99
- "eval_accuracy": 0.9448863636363637,
100
- "eval_error_rate": 0.05511363636363631,
101
- "eval_f1": 0.9416857901577765,
102
- "eval_loss": 0.58392333984375,
103
- "eval_precision": 0.9467451523545707,
104
- "eval_recall": 0.9407894736842105,
105
- "eval_runtime": 46.5589,
106
- "eval_samples_per_second": 3.265,
107
- "eval_steps_per_second": 0.107,
108
- "eval_top1_accuracy": 0.9407894736842105,
109
  "step": 152
110
  },
111
  {
112
  "epoch": 5.0,
113
- "train_accuracy": 0.9466374269005848
114
  },
115
  {
116
  "epoch": 5.0,
117
- "grad_norm": 4.086988925933838,
118
- "learning_rate": 8.62589039584572e-06,
119
- "loss": 0.4337,
120
  "step": 190
121
  },
122
  {
123
  "epoch": 5.0,
124
- "eval_accuracy": 0.9818181818181818,
125
- "eval_error_rate": 0.018181818181818188,
126
- "eval_f1": 0.9802351026820783,
127
- "eval_loss": 0.23391342163085938,
128
- "eval_precision": 0.9819548872180451,
129
- "eval_recall": 0.9802631578947368,
130
- "eval_runtime": 48.9157,
131
- "eval_samples_per_second": 3.107,
132
- "eval_steps_per_second": 0.102,
133
- "eval_top1_accuracy": 0.9802631578947368,
134
  "step": 190
135
  },
136
  {
137
  "epoch": 6.0,
138
- "train_accuracy": 0.9846491228070176
139
  },
140
  {
141
  "epoch": 6.0,
142
- "grad_norm": 1.9588254690170288,
143
- "learning_rate": 1.1273479642392808e-05,
144
- "loss": 0.1569,
145
  "step": 228
146
  },
147
  {
148
  "epoch": 6.0,
149
- "eval_accuracy": 0.9755681818181818,
150
- "eval_error_rate": 0.024431818181818166,
151
- "eval_f1": 0.9734739448002901,
152
- "eval_loss": 0.09490276873111725,
153
- "eval_precision": 0.9738519848439453,
154
- "eval_recall": 0.9736842105263158,
155
- "eval_runtime": 62.9862,
156
- "eval_samples_per_second": 2.413,
157
- "eval_steps_per_second": 0.079,
158
- "eval_top1_accuracy": 0.9736842105263158,
159
  "step": 228
160
  },
161
  {
162
  "epoch": 7.0,
163
- "train_accuracy": 0.9890350877192983
164
  },
165
  {
166
  "epoch": 7.0,
167
- "grad_norm": 4.820840835571289,
168
- "learning_rate": 1.3854482295832083e-05,
169
- "loss": 0.0577,
170
  "step": 266
171
  },
172
  {
173
  "epoch": 7.0,
174
- "eval_accuracy": 0.9878787878787879,
175
- "eval_error_rate": 0.012121212121212088,
176
- "eval_f1": 0.9867362170674966,
177
- "eval_loss": 0.04335561394691467,
178
- "eval_precision": 0.9872349657566376,
179
  "eval_recall": 0.9868421052631579,
180
- "eval_runtime": 60.8368,
181
- "eval_samples_per_second": 2.498,
182
- "eval_steps_per_second": 0.082,
183
  "eval_top1_accuracy": 0.9868421052631579,
184
  "step": 266
185
  },
186
  {
187
  "epoch": 8.0,
188
- "train_accuracy": 0.9978070175438597
189
  },
190
  {
191
  "epoch": 8.0,
192
- "grad_norm": 0.17172254621982574,
193
- "learning_rate": 1.6172144859969913e-05,
194
- "loss": 0.0172,
195
  "step": 304
196
  },
197
  {
198
  "epoch": 8.0,
199
- "eval_accuracy": 0.9876893939393939,
200
- "eval_error_rate": 0.012310606060606077,
201
- "eval_f1": 0.9868389880173071,
202
- "eval_loss": 0.038041990250349045,
203
- "eval_precision": 0.9870356037151703,
204
- "eval_recall": 0.9868421052631579,
205
- "eval_runtime": 52.1078,
206
- "eval_samples_per_second": 2.917,
207
- "eval_steps_per_second": 0.096,
208
- "eval_top1_accuracy": 0.9868421052631579,
209
  "step": 304
210
  },
211
  {
212
  "epoch": 9.0,
213
- "train_accuracy": 0.993421052631579
214
  },
215
  {
216
  "epoch": 9.0,
217
- "grad_norm": 0.35163307189941406,
218
- "learning_rate": 1.8049788627450628e-05,
219
- "loss": 0.0208,
220
  "step": 342
221
  },
222
  {
223
  "epoch": 9.0,
224
- "eval_accuracy": 0.9878787878787879,
225
- "eval_error_rate": 0.012121212121212088,
226
- "eval_f1": 0.986835875199362,
227
- "eval_loss": 0.05302947387099266,
228
- "eval_precision": 0.9876160990712075,
229
- "eval_recall": 0.9868421052631579,
230
- "eval_runtime": 62.895,
231
- "eval_samples_per_second": 2.417,
232
- "eval_steps_per_second": 0.079,
233
- "eval_top1_accuracy": 0.9868421052631579,
234
  "step": 342
235
  },
236
  {
237
  "epoch": 10.0,
238
- "train_accuracy": 0.9985380116959064
239
  },
240
  {
241
  "epoch": 10.0,
242
- "grad_norm": 0.4090166985988617,
243
- "learning_rate": 1.9344278148426573e-05,
244
- "loss": 0.0071,
245
  "step": 380
246
  },
247
  {
248
  "epoch": 10.0,
249
- "eval_accuracy": 0.9696969696969697,
250
- "eval_error_rate": 0.030303030303030276,
251
- "eval_f1": 0.9669489564967301,
252
- "eval_loss": 0.09868758916854858,
253
- "eval_precision": 0.9715504978662873,
254
- "eval_recall": 0.9671052631578947,
255
- "eval_runtime": 62.4085,
256
- "eval_samples_per_second": 2.436,
257
- "eval_steps_per_second": 0.08,
258
- "eval_top1_accuracy": 0.9671052631578947,
259
  "step": 380
260
  },
261
  {
262
  "epoch": 11.0,
263
- "train_accuracy": 0.9948830409356725
264
  },
265
  {
266
  "epoch": 11.0,
267
- "grad_norm": 0.16305039823055267,
268
- "learning_rate": 1.995693264909124e-05,
269
- "loss": 0.0062,
270
  "step": 418
271
  },
272
  {
273
  "epoch": 11.0,
274
- "eval_accuracy": 0.9939393939393939,
275
- "eval_error_rate": 0.0060606060606061,
276
- "eval_f1": 0.993419541966282,
277
- "eval_loss": 0.03395003080368042,
278
- "eval_precision": 0.9936145510835913,
279
- "eval_recall": 0.993421052631579,
280
- "eval_runtime": 47.4116,
281
- "eval_samples_per_second": 3.206,
282
- "eval_steps_per_second": 0.105,
283
- "eval_top1_accuracy": 0.993421052631579,
284
  "step": 418
285
  },
286
  {
287
  "epoch": 12.0,
288
- "train_accuracy": 0.993421052631579
289
  },
290
  {
291
  "epoch": 12.0,
292
- "grad_norm": 3.5277631282806396,
293
- "learning_rate": 1.9969660582486496e-05,
294
- "loss": 0.0165,
295
  "step": 456
296
  },
297
  {
298
  "epoch": 12.0,
299
- "eval_accuracy": 0.9818181818181818,
300
- "eval_error_rate": 0.018181818181818188,
301
- "eval_f1": 0.979943544279758,
302
- "eval_loss": 0.06494485586881638,
303
- "eval_precision": 0.9808553804296839,
304
- "eval_recall": 0.9802631578947368,
305
- "eval_runtime": 56.3797,
306
- "eval_samples_per_second": 2.696,
307
- "eval_steps_per_second": 0.089,
308
- "eval_top1_accuracy": 0.9802631578947368,
309
  "step": 456
310
  },
311
  {
312
  "epoch": 13.0,
313
- "train_accuracy": 0.9956140350877193
314
  },
315
  {
316
  "epoch": 13.0,
317
- "grad_norm": 0.053868379443883896,
318
- "learning_rate": 1.980785357262109e-05,
319
- "loss": 0.0057,
320
  "step": 494
321
  },
322
  {
323
  "epoch": 13.0,
324
- "eval_accuracy": 0.9939393939393939,
325
- "eval_error_rate": 0.0060606060606061,
326
- "eval_f1": 0.993419541966282,
327
- "eval_loss": 0.03750297427177429,
328
- "eval_precision": 0.9936145510835913,
329
- "eval_recall": 0.993421052631579,
330
- "eval_runtime": 61.2882,
331
- "eval_samples_per_second": 2.48,
332
- "eval_steps_per_second": 0.082,
333
- "eval_top1_accuracy": 0.993421052631579,
334
  "step": 494
335
  },
336
  {
337
  "epoch": 14.0,
338
- "train_accuracy": 0.9985380116959064
339
  },
340
  {
341
  "epoch": 14.0,
342
- "grad_norm": 0.02169680781662464,
343
- "learning_rate": 1.950863907947058e-05,
344
- "loss": 0.0038,
345
  "step": 532
346
  },
347
  {
348
  "epoch": 14.0,
349
- "eval_accuracy": 0.9939393939393939,
350
- "eval_error_rate": 0.0060606060606061,
351
- "eval_f1": 0.993419541966282,
352
- "eval_loss": 0.037650275975465775,
353
- "eval_precision": 0.9936145510835913,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354
  "eval_recall": 0.993421052631579,
355
- "eval_runtime": 64.509,
356
- "eval_samples_per_second": 2.356,
357
- "eval_steps_per_second": 0.078,
358
  "eval_top1_accuracy": 0.993421052631579,
359
- "step": 532
360
  },
361
  {
362
- "epoch": 14.0,
363
- "step": 532,
364
- "total_flos": 1.319259102551212e+18,
365
- "train_loss": 0.4395476876008779,
366
- "train_runtime": 10817.4486,
367
- "train_samples_per_second": 3.372,
368
- "train_steps_per_second": 0.105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
  }
370
  ],
371
- "logging_steps": 500,
372
  "max_steps": 1140,
373
  "num_input_tokens_seen": 0,
374
  "num_train_epochs": 30,
@@ -376,11 +451,11 @@
376
  "stateful_callbacks": {
377
  "EarlyStoppingCallback": {
378
  "args": {
379
- "early_stopping_patience": 3,
380
  "early_stopping_threshold": 0.0
381
  },
382
  "attributes": {
383
- "early_stopping_patience_counter": 3
384
  }
385
  },
386
  "TrainerControl": {
@@ -394,8 +469,8 @@
394
  "attributes": {}
395
  }
396
  },
397
- "total_flos": 1.319259102551212e+18,
398
- "train_batch_size": 32,
399
  "trial_name": null,
400
  "trial_params": null
401
  }
 
1
  {
2
+ "best_metric": 0.003647729055956006,
3
+ "best_model_checkpoint": "vit-base-patch16-224-finetuned-barkley\\checkpoint-570",
4
+ "epoch": 17.0,
5
  "eval_steps": 500,
6
+ "global_step": 646,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "epoch": 1.0,
13
+ "train_accuracy": 0.26398026315789475
14
  },
15
  {
16
  "epoch": 1.0,
17
+ "grad_norm": 6.455413341522217,
18
+ "learning_rate": 2.0914608267470257e-06,
19
+ "loss": 1.6093,
20
  "step": 38
21
  },
22
  {
23
  "epoch": 1.0,
24
+ "eval_accuracy": 0.4148818501759678,
25
+ "eval_error_rate": 0.5851181498240322,
26
+ "eval_f1": 0.406583244487493,
27
+ "eval_loss": 1.4340049028396606,
28
+ "eval_precision": 0.47685010008788203,
29
+ "eval_recall": 0.4342105263157895,
30
+ "eval_runtime": 80.0768,
31
+ "eval_samples_per_second": 1.898,
32
+ "eval_steps_per_second": 0.237,
33
+ "eval_top1_accuracy": 0.4342105263157895,
34
  "step": 38
35
  },
36
  {
37
  "epoch": 2.0,
38
+ "train_accuracy": 0.5095029239766082
39
  },
40
  {
41
  "epoch": 2.0,
42
+ "grad_norm": 6.083907127380371,
43
+ "learning_rate": 2.365146216752351e-06,
44
+ "loss": 1.2908,
45
  "step": 76
46
  },
47
  {
48
  "epoch": 2.0,
49
+ "eval_accuracy": 0.6161337355455003,
50
+ "eval_error_rate": 0.3838662644544997,
51
+ "eval_f1": 0.615989993007031,
52
+ "eval_loss": 1.1747227907180786,
53
+ "eval_precision": 0.6587479462326463,
54
+ "eval_recall": 0.6118421052631579,
55
+ "eval_runtime": 62.2988,
56
+ "eval_samples_per_second": 2.44,
57
+ "eval_steps_per_second": 0.305,
58
+ "eval_top1_accuracy": 0.6118421052631579,
59
  "step": 76
60
  },
61
  {
62
  "epoch": 3.0,
63
+ "train_accuracy": 0.7017543859649122
64
  },
65
  {
66
  "epoch": 3.0,
67
+ "grad_norm": 5.073782444000244,
68
+ "learning_rate": 2.8189702123460904e-06,
69
+ "loss": 1.0409,
70
  "step": 114
71
  },
72
  {
73
  "epoch": 3.0,
74
+ "eval_accuracy": 0.7424685771744596,
75
+ "eval_error_rate": 0.2575314228255404,
76
+ "eval_f1": 0.7293001164996891,
77
+ "eval_loss": 0.9174113869667053,
78
+ "eval_precision": 0.7381704260651629,
79
+ "eval_recall": 0.7302631578947368,
80
+ "eval_runtime": 63.0328,
81
+ "eval_samples_per_second": 2.411,
82
+ "eval_steps_per_second": 0.301,
83
+ "eval_top1_accuracy": 0.7302631578947368,
84
  "step": 114
85
  },
86
  {
87
  "epoch": 4.0,
88
+ "train_accuracy": 0.8172514619883041
89
  },
90
  {
91
  "epoch": 4.0,
92
+ "grad_norm": 4.503601551055908,
93
+ "learning_rate": 3.449473887042014e-06,
94
+ "loss": 0.781,
95
  "step": 152
96
  },
97
  {
98
  "epoch": 4.0,
99
+ "eval_accuracy": 0.8650025138260432,
100
+ "eval_error_rate": 0.1349974861739568,
101
+ "eval_f1": 0.862176726467179,
102
+ "eval_loss": 0.6527765989303589,
103
+ "eval_precision": 0.8632378661708033,
104
+ "eval_recall": 0.8618421052631579,
105
+ "eval_runtime": 64.1793,
106
+ "eval_samples_per_second": 2.368,
107
+ "eval_steps_per_second": 0.296,
108
+ "eval_top1_accuracy": 0.8618421052631579,
109
  "step": 152
110
  },
111
  {
112
  "epoch": 5.0,
113
+ "train_accuracy": 0.9027777777777778
114
  },
115
  {
116
  "epoch": 5.0,
117
+ "grad_norm": 3.8262150287628174,
118
+ "learning_rate": 4.251851708560589e-06,
119
+ "loss": 0.5429,
120
  "step": 190
121
  },
122
  {
123
  "epoch": 5.0,
124
+ "eval_accuracy": 0.9442885872297637,
125
+ "eval_error_rate": 0.05571141277023628,
126
+ "eval_f1": 0.9404774954713644,
127
+ "eval_loss": 0.41116613149642944,
128
+ "eval_precision": 0.9416901233513075,
129
+ "eval_recall": 0.9407894736842105,
130
+ "eval_runtime": 64.0989,
131
+ "eval_samples_per_second": 2.371,
132
+ "eval_steps_per_second": 0.296,
133
+ "eval_top1_accuracy": 0.9407894736842105,
134
  "step": 190
135
  },
136
  {
137
  "epoch": 6.0,
138
+ "train_accuracy": 0.9568713450292398
139
  },
140
  {
141
  "epoch": 6.0,
142
+ "grad_norm": 2.5020029544830322,
143
+ "learning_rate": 5.219988165325166e-06,
144
+ "loss": 0.328,
145
  "step": 228
146
  },
147
  {
148
  "epoch": 6.0,
149
+ "eval_accuracy": 0.981111111111111,
150
+ "eval_error_rate": 0.018888888888888955,
151
+ "eval_f1": 0.980233547031901,
152
+ "eval_loss": 0.22286705672740936,
153
+ "eval_precision": 0.9808624413887572,
154
+ "eval_recall": 0.9802631578947368,
155
+ "eval_runtime": 65.9742,
156
+ "eval_samples_per_second": 2.304,
157
+ "eval_steps_per_second": 0.288,
158
+ "eval_top1_accuracy": 0.9802631578947368,
159
  "step": 228
160
  },
161
  {
162
  "epoch": 7.0,
163
+ "train_accuracy": 0.9707602339181286
164
  },
165
  {
166
  "epoch": 7.0,
167
+ "grad_norm": 3.700869560241699,
168
+ "learning_rate": 6.346504377274108e-06,
169
+ "loss": 0.1837,
170
  "step": 266
171
  },
172
  {
173
  "epoch": 7.0,
174
+ "eval_accuracy": 0.9877777777777779,
175
+ "eval_error_rate": 0.012222222222222134,
176
+ "eval_f1": 0.9868484170131115,
177
+ "eval_loss": 0.11809363961219788,
178
+ "eval_precision": 0.9870857699805068,
179
  "eval_recall": 0.9868421052631579,
180
+ "eval_runtime": 64.4539,
181
+ "eval_samples_per_second": 2.358,
182
+ "eval_steps_per_second": 0.295,
183
  "eval_top1_accuracy": 0.9868421052631579,
184
  "step": 266
185
  },
186
  {
187
  "epoch": 8.0,
188
+ "train_accuracy": 0.9766081871345029
189
  },
190
  {
191
  "epoch": 8.0,
192
+ "grad_norm": 1.4798824787139893,
193
+ "learning_rate": 7.622814335733349e-06,
194
+ "loss": 0.1131,
195
  "step": 304
196
  },
197
  {
198
  "epoch": 8.0,
199
+ "eval_accuracy": 0.9944444444444445,
200
+ "eval_error_rate": 0.005555555555555536,
201
+ "eval_f1": 0.99343678755752,
202
+ "eval_loss": 0.06803914159536362,
203
+ "eval_precision": 0.9936647173489279,
204
+ "eval_recall": 0.993421052631579,
205
+ "eval_runtime": 66.8397,
206
+ "eval_samples_per_second": 2.274,
207
+ "eval_steps_per_second": 0.284,
208
+ "eval_top1_accuracy": 0.993421052631579,
209
  "step": 304
210
  },
211
  {
212
  "epoch": 9.0,
213
+ "train_accuracy": 0.9912280701754386
214
  },
215
  {
216
  "epoch": 9.0,
217
+ "grad_norm": 0.24450232088565826,
218
+ "learning_rate": 9.039190343704055e-06,
219
+ "loss": 0.0526,
220
  "step": 342
221
  },
222
  {
223
  "epoch": 9.0,
224
+ "eval_accuracy": 0.9944444444444445,
225
+ "eval_error_rate": 0.005555555555555536,
226
+ "eval_f1": 0.99343678755752,
227
+ "eval_loss": 0.0387217253446579,
228
+ "eval_precision": 0.9936647173489279,
229
+ "eval_recall": 0.993421052631579,
230
+ "eval_runtime": 62.2983,
231
+ "eval_samples_per_second": 2.44,
232
+ "eval_steps_per_second": 0.305,
233
+ "eval_top1_accuracy": 0.993421052631579,
234
  "step": 342
235
  },
236
  {
237
  "epoch": 10.0,
238
+ "train_accuracy": 0.9948830409356725
239
  },
240
  {
241
  "epoch": 10.0,
242
+ "grad_norm": 0.18834975361824036,
243
+ "learning_rate": 1.0584837157796744e-05,
244
+ "loss": 0.0283,
245
  "step": 380
246
  },
247
  {
248
  "epoch": 10.0,
249
+ "eval_accuracy": 0.9877777777777779,
250
+ "eval_error_rate": 0.012222222222222134,
251
+ "eval_f1": 0.9868641519390525,
252
+ "eval_loss": 0.032834384590387344,
253
+ "eval_precision": 0.9873294346978557,
254
+ "eval_recall": 0.9868421052631579,
255
+ "eval_runtime": 65.4882,
256
+ "eval_samples_per_second": 2.321,
257
+ "eval_steps_per_second": 0.29,
258
+ "eval_top1_accuracy": 0.9868421052631579,
259
  "step": 380
260
  },
261
  {
262
  "epoch": 11.0,
263
+ "train_accuracy": 0.9956140350877193
264
  },
265
  {
266
  "epoch": 11.0,
267
+ "grad_norm": 0.2787030041217804,
268
+ "learning_rate": 1.2247974266721769e-05,
269
+ "loss": 0.019,
270
  "step": 418
271
  },
272
  {
273
  "epoch": 11.0,
274
+ "eval_accuracy": 0.9888888888888889,
275
+ "eval_error_rate": 0.011111111111111072,
276
+ "eval_f1": 0.9867701266776593,
277
+ "eval_loss": 0.0223978441208601,
278
+ "eval_precision": 0.9872979940891655,
279
+ "eval_recall": 0.9868421052631579,
280
+ "eval_runtime": 66.7371,
281
+ "eval_samples_per_second": 2.278,
282
+ "eval_steps_per_second": 0.285,
283
+ "eval_top1_accuracy": 0.9868421052631579,
284
  "step": 418
285
  },
286
  {
287
  "epoch": 12.0,
288
+ "train_accuracy": 0.9963450292397661
289
  },
290
  {
291
  "epoch": 12.0,
292
+ "grad_norm": 1.9764137268066406,
293
+ "learning_rate": 1.401592567923113e-05,
294
+ "loss": 0.0148,
295
  "step": 456
296
  },
297
  {
298
  "epoch": 12.0,
299
+ "eval_accuracy": 0.9888888888888889,
300
+ "eval_error_rate": 0.011111111111111072,
301
+ "eval_f1": 0.9867701266776593,
302
+ "eval_loss": 0.02013457380235195,
303
+ "eval_precision": 0.9872979940891655,
304
+ "eval_recall": 0.9868421052631579,
305
+ "eval_runtime": 62.9372,
306
+ "eval_samples_per_second": 2.415,
307
+ "eval_steps_per_second": 0.302,
308
+ "eval_top1_accuracy": 0.9868421052631579,
309
  "step": 456
310
  },
311
  {
312
  "epoch": 13.0,
313
+ "train_accuracy": 0.9963450292397661
314
  },
315
  {
316
  "epoch": 13.0,
317
+ "grad_norm": 0.050672873854637146,
318
+ "learning_rate": 1.5875216537171772e-05,
319
+ "loss": 0.0095,
320
  "step": 494
321
  },
322
  {
323
  "epoch": 13.0,
324
+ "eval_accuracy": 0.9877777777777779,
325
+ "eval_error_rate": 0.012222222222222134,
326
+ "eval_f1": 0.9868484170131115,
327
+ "eval_loss": 0.03958281874656677,
328
+ "eval_precision": 0.9870857699805068,
329
+ "eval_recall": 0.9868421052631579,
330
+ "eval_runtime": 63.5973,
331
+ "eval_samples_per_second": 2.39,
332
+ "eval_steps_per_second": 0.299,
333
+ "eval_top1_accuracy": 0.9868421052631579,
334
  "step": 494
335
  },
336
  {
337
  "epoch": 14.0,
338
+ "train_accuracy": 0.9978070175438597
339
  },
340
  {
341
  "epoch": 14.0,
342
+ "grad_norm": 0.06194866821169853,
343
+ "learning_rate": 1.7811675817291163e-05,
344
+ "loss": 0.007,
345
  "step": 532
346
  },
347
  {
348
  "epoch": 14.0,
349
+ "eval_accuracy": 1.0,
350
+ "eval_error_rate": 0.0,
351
+ "eval_f1": 1.0,
352
+ "eval_loss": 0.0047844694927334785,
353
+ "eval_precision": 1.0,
354
+ "eval_recall": 1.0,
355
+ "eval_runtime": 63.8972,
356
+ "eval_samples_per_second": 2.379,
357
+ "eval_steps_per_second": 0.297,
358
+ "eval_top1_accuracy": 1.0,
359
+ "step": 532
360
+ },
361
+ {
362
+ "epoch": 15.0,
363
+ "train_accuracy": 0.9956140350877193
364
+ },
365
+ {
366
+ "epoch": 15.0,
367
+ "grad_norm": 0.3071841597557068,
368
+ "learning_rate": 1.9810544339029155e-05,
369
+ "loss": 0.011,
370
+ "step": 570
371
+ },
372
+ {
373
+ "epoch": 15.0,
374
+ "eval_accuracy": 1.0,
375
+ "eval_error_rate": 0.0,
376
+ "eval_f1": 1.0,
377
+ "eval_loss": 0.003647729055956006,
378
+ "eval_precision": 1.0,
379
+ "eval_recall": 1.0,
380
+ "eval_runtime": 65.5965,
381
+ "eval_samples_per_second": 2.317,
382
+ "eval_steps_per_second": 0.29,
383
+ "eval_top1_accuracy": 1.0,
384
+ "step": 570
385
+ },
386
+ {
387
+ "epoch": 16.0,
388
+ "train_accuracy": 0.9978070175438597
389
+ },
390
+ {
391
+ "epoch": 16.0,
392
+ "grad_norm": 0.05617503821849823,
393
+ "learning_rate": 2.1856587255089357e-05,
394
+ "loss": 0.0071,
395
+ "step": 608
396
+ },
397
+ {
398
+ "epoch": 16.0,
399
+ "eval_accuracy": 0.9941176470588236,
400
+ "eval_error_rate": 0.00588235294117645,
401
+ "eval_f1": 0.9934170172927719,
402
+ "eval_loss": 0.009170782752335072,
403
+ "eval_precision": 0.9935988620199147,
404
  "eval_recall": 0.993421052631579,
405
+ "eval_runtime": 66.4048,
406
+ "eval_samples_per_second": 2.289,
407
+ "eval_steps_per_second": 0.286,
408
  "eval_top1_accuracy": 0.993421052631579,
409
+ "step": 608
410
  },
411
  {
412
+ "epoch": 17.0,
413
+ "train_accuracy": 0.9963450292397661
414
+ },
415
+ {
416
+ "epoch": 17.0,
417
+ "grad_norm": 0.02715430036187172,
418
+ "learning_rate": 2.393421016741653e-05,
419
+ "loss": 0.0103,
420
+ "step": 646
421
+ },
422
+ {
423
+ "epoch": 17.0,
424
+ "eval_accuracy": 0.9944444444444445,
425
+ "eval_error_rate": 0.005555555555555536,
426
+ "eval_f1": 0.9934286478144102,
427
+ "eval_loss": 0.014811488799750805,
428
+ "eval_precision": 0.9936332767402377,
429
+ "eval_recall": 0.993421052631579,
430
+ "eval_runtime": 64.9042,
431
+ "eval_samples_per_second": 2.342,
432
+ "eval_steps_per_second": 0.293,
433
+ "eval_top1_accuracy": 0.993421052631579,
434
+ "step": 646
435
+ },
436
+ {
437
+ "epoch": 17.0,
438
+ "step": 646,
439
+ "total_flos": 1.601957481669329e+18,
440
+ "train_loss": 0.3558414801263219,
441
+ "train_runtime": 14288.2591,
442
+ "train_samples_per_second": 2.553,
443
+ "train_steps_per_second": 0.08
444
  }
445
  ],
446
+ "logging_steps": 10,
447
  "max_steps": 1140,
448
  "num_input_tokens_seen": 0,
449
  "num_train_epochs": 30,
 
451
  "stateful_callbacks": {
452
  "EarlyStoppingCallback": {
453
  "args": {
454
+ "early_stopping_patience": 2,
455
  "early_stopping_threshold": 0.0
456
  },
457
  "attributes": {
458
+ "early_stopping_patience_counter": 0
459
  }
460
  },
461
  "TrainerControl": {
 
469
  "attributes": {}
470
  }
471
  },
472
+ "total_flos": 1.601957481669329e+18,
473
+ "train_batch_size": 8,
474
  "trial_name": null,
475
  "trial_params": null
476
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5eb43bcfd2e0e3cbc7cac889051ecb5a72ca97601937778cbe86b8e6db9d07d1
3
  size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf88fd2cbab55edfe4073469846fa48192ab595fedef138b7aa73e05d0927aad
3
  size 5176