File size: 2,113 Bytes
6fda347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from transformers import AutoModel, AutoConfig
from DaViT.modeling_davit import DaViTModel
from DaViT.configuration_davit import DaViTConfig
from unittest.mock import patch
import os
import logging
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
from typing import Tuple, Dict, Any, Union, List


def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
    """
    Custom workaround for the import error related to flash_attn.
    Args:
        filename (str | os.PathLike): The filename to check for imports.
    Returns:
        list[str]: List of required imports.
    """
    if not str(filename).endswith("modeling_florence2.py"):
        return get_imports(filename)
    imports = get_imports(filename)
    if "flash_attn" in imports:
        imports.remove("flash_attn")
    return imports


current_directory = os.getcwd()

# Register the configuration and model
AutoConfig.register("davit", DaViTConfig)
AutoModel.register(DaViTConfig, DaViTModel)


# Register Huggingface Model
DaViTConfig.register_for_auto_class()
DaViTModel.register_for_auto_class("AutoModel")

AutoConfig.register("davit", DaViTConfig)
AutoModel.register(DaViTConfig, DaViTModel)

# Step 1: Create a configuration object
config = DaViTConfig()
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
    model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Florence-2-large-ft",
        trust_remote_code=True,
        cache_dir=current_directory,
        device_map="cpu",
        torch_dtype=torch.float16,
    )
processor = AutoProcessor.from_pretrained(
    "microsoft/Florence-2-large-ft",
    trust_remote_code=True,
    cache_dir=current_directory,
    device_map="cpu",
)
# Step 2: Create a model object
model2 = AutoModel.from_config(config)
model2.to(torch.float16)

model2.load_state_dict(model.vision_tower.state_dict())


model2.push_to_hub("DaViT-Florence-2-large-ft")
processor.push_to_hub("DaViT-Florence-2-large-ft")