amaye15
commited on
Commit
·
e165930
1
Parent(s):
64262c3
handler clean up & readme updated
Browse files- README.md +114 -0
- handler.py +0 -136
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
# EndpointHandler
|
7 |
+
|
8 |
+
`EndpointHandler` is a Python class that processes image and text data to generate embeddings and similarity scores using the ColQwen2 model—a visual retriever based on Qwen2-VL-2B-Instruct with the ColBERT strategy. This handler is optimized for retrieving documents and visual information based on their visual and textual features.
|
9 |
+
|
10 |
+
## Overview
|
11 |
+
|
12 |
+
- **Efficient Document Retrieval**: Uses the ColQwen2 model to produce embeddings for images and text for accurate document retrieval.
|
13 |
+
- **Multi-vector Representation**: Generates ColBERT-style multi-vector embeddings for improved similarity search.
|
14 |
+
- **Flexible Image Resolution**: Supports dynamic image resolution without altering the aspect ratio, capped at 768 patches for memory efficiency.
|
15 |
+
- **Device Compatibility**: Automatically utilizes available CUDA devices or defaults to CPU.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
The **ColQwen2** model extends Qwen2-VL-2B with a focus on vision-language tasks, making it suitable for content indexing and retrieval. Key features include:
|
20 |
+
- **Training**: Pre-trained with a batch size of 256 over 5 epochs, with a modified pad token.
|
21 |
+
- **Input Flexibility**: Handles various image resolutions without resizing, ensuring accurate multi-vector representation.
|
22 |
+
- **Similarity Scoring**: Utilizes a ColBERT-style scoring approach for efficient retrieval across image and text modalities.
|
23 |
+
|
24 |
+
This base version is untrained, providing deterministic initialization of the projection layer for further customization.
|
25 |
+
|
26 |
+
## How to Use
|
27 |
+
|
28 |
+
The following example demonstrates how to use `EndpointHandler` for processing PDF documents and text. PDF pages are converted to base64 images, which are then passed as input alongside text data to the handler.
|
29 |
+
|
30 |
+
### Example Script
|
31 |
+
|
32 |
+
```python
|
33 |
+
import torch
|
34 |
+
from pdf2image import convert_from_path
|
35 |
+
import base64
|
36 |
+
from io import BytesIO
|
37 |
+
import requests
|
38 |
+
|
39 |
+
# Function to convert PIL Image to base64 string
|
40 |
+
def pil_image_to_base64(image):
|
41 |
+
"""Converts a PIL Image to a base64 encoded string."""
|
42 |
+
buffer = BytesIO()
|
43 |
+
image.save(buffer, format="PNG")
|
44 |
+
return base64.b64encode(buffer.getvalue()).decode()
|
45 |
+
|
46 |
+
# Function to convert PDF pages to base64 images
|
47 |
+
def convert_pdf_to_base64_images(pdf_path):
|
48 |
+
"""Converts PDF pages to base64 encoded images."""
|
49 |
+
pages = convert_from_path(pdf_path)
|
50 |
+
return [pil_image_to_base64(page) for page in pages]
|
51 |
+
|
52 |
+
# Function to send payload to API and retrieve response
|
53 |
+
def query_api(payload, api_url, headers):
|
54 |
+
"""Sends a POST request to the API and returns the response."""
|
55 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
56 |
+
return response.json()
|
57 |
+
|
58 |
+
# Main execution
|
59 |
+
if __name__ == "__main__":
|
60 |
+
# Convert PDF pages to base64 encoded images
|
61 |
+
encoded_images = convert_pdf_to_base64_images('document.pdf')
|
62 |
+
|
63 |
+
# Prepare payload
|
64 |
+
payload = {
|
65 |
+
"inputs": [],
|
66 |
+
"image": encoded_images,
|
67 |
+
"text": ["example query text"]
|
68 |
+
}
|
69 |
+
|
70 |
+
# API configuration
|
71 |
+
API_URL = "https://your-api-url"
|
72 |
+
headers = {
|
73 |
+
"Accept": "application/json",
|
74 |
+
"Authorization": "Bearer your_access_token",
|
75 |
+
"Content-Type": "application/json"
|
76 |
+
}
|
77 |
+
|
78 |
+
# Query the API and get output
|
79 |
+
output = query_api(payload=payload, api_url=API_URL, headers=headers)
|
80 |
+
print(output)
|
81 |
+
```
|
82 |
+
|
83 |
+
## Inputs and Outputs
|
84 |
+
|
85 |
+
### Input Format
|
86 |
+
The `EndpointHandler` expects a dictionary containing:
|
87 |
+
- **image**: A list of base64-encoded strings for images (e.g., PDF pages converted to images).
|
88 |
+
- **text**: A list of text strings representing queries or document contents.
|
89 |
+
- **batch_size** (optional): The batch size for processing images and text. Defaults to `4`.
|
90 |
+
|
91 |
+
Example payload:
|
92 |
+
```json
|
93 |
+
{
|
94 |
+
"image": ["base64_image_string_1", "base64_image_string_2"],
|
95 |
+
"text": ["sample text 1", "sample text 2"],
|
96 |
+
"batch_size": 4
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
### Output Format
|
101 |
+
The handler returns a dictionary with the following keys:
|
102 |
+
- **image**: List of embeddings for each image.
|
103 |
+
- **text**: List of embeddings for each text entry.
|
104 |
+
- **scores**: List of similarity scores between the image and text embeddings.
|
105 |
+
|
106 |
+
Example output:
|
107 |
+
```json
|
108 |
+
{
|
109 |
+
"image": [[0.12, 0.34, ...], [0.56, 0.78, ...]],
|
110 |
+
"text": [[0.11, 0.22, ...], [0.33, 0.44, ...]],
|
111 |
+
"scores": [[0.87, 0.45], [0.23, 0.67]]
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
### Error Handling
|
116 |
+
If any issues occur during processing (e.g., decoding images or model inference), the handler logs the error and returns an error message in the output dictionary.
|
117 |
+
|
handler.py
CHANGED
@@ -1,139 +1,3 @@
|
|
1 |
-
# import torch
|
2 |
-
# from typing import Dict, Any, List
|
3 |
-
# from PIL import Image
|
4 |
-
# import base64
|
5 |
-
# from io import BytesIO
|
6 |
-
|
7 |
-
|
8 |
-
# class EndpointHandler:
|
9 |
-
# """
|
10 |
-
# A handler class for processing image and text data, generating embeddings using a specified model and processor.
|
11 |
-
|
12 |
-
# Attributes:
|
13 |
-
# model: The pre-trained model used for generating embeddings.
|
14 |
-
# processor: The pre-trained processor used to process images and text before model inference.
|
15 |
-
# device: The device (CPU or CUDA) used to run model inference.
|
16 |
-
# default_batch_size: The default batch size for processing images and text in batches.
|
17 |
-
# """
|
18 |
-
|
19 |
-
# def __init__(self, path: str = "", default_batch_size: int = 4):
|
20 |
-
# """
|
21 |
-
# Initializes the EndpointHandler with a specified model path and default batch size.
|
22 |
-
|
23 |
-
# Args:
|
24 |
-
# path (str): Path to the pre-trained model and processor.
|
25 |
-
# default_batch_size (int): Default batch size for processing images and text data.
|
26 |
-
# """
|
27 |
-
# from colpali_engine.models import ColQwen2, ColQwen2Processor
|
28 |
-
|
29 |
-
# self.model = ColQwen2.from_pretrained(
|
30 |
-
# path,
|
31 |
-
# torch_dtype=torch.bfloat16,
|
32 |
-
# device_map=(
|
33 |
-
# "cuda:0" if torch.cuda.is_available() else "cpu"
|
34 |
-
# ), # Set device map based on availability
|
35 |
-
# ).eval()
|
36 |
-
# self.processor = ColQwen2Processor.from_pretrained(path)
|
37 |
-
|
38 |
-
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
-
# self.model.to(self.device)
|
40 |
-
# self.default_batch_size = default_batch_size
|
41 |
-
|
42 |
-
# def _process_image_batch(self, images: List[Image.Image]) -> List[List[float]]:
|
43 |
-
# """
|
44 |
-
# Processes a batch of images and generates embeddings.
|
45 |
-
|
46 |
-
# Args:
|
47 |
-
# images (List[Image.Image]): List of images to process.
|
48 |
-
|
49 |
-
# Returns:
|
50 |
-
# List[List[float]]: List of embeddings for each image.
|
51 |
-
# """
|
52 |
-
# batch_images = self.processor.process_images(images).to(self.device)
|
53 |
-
|
54 |
-
# with torch.no_grad():
|
55 |
-
# image_embeddings = self.model(**batch_images)
|
56 |
-
|
57 |
-
# return image_embeddings.cpu().tolist()
|
58 |
-
|
59 |
-
# def _process_text_batch(self, texts: List[str]) -> List[List[float]]:
|
60 |
-
# """
|
61 |
-
# Processes a batch of text queries and generates embeddings.
|
62 |
-
|
63 |
-
# Args:
|
64 |
-
# texts (List[str]): List of text queries to process.
|
65 |
-
|
66 |
-
# Returns:
|
67 |
-
# List[List[float]]: List of embeddings for each text query.
|
68 |
-
# """
|
69 |
-
# batch_queries = self.processor.process_queries(texts).to(self.device)
|
70 |
-
|
71 |
-
# with torch.no_grad():
|
72 |
-
# query_embeddings = self.model(**batch_queries)
|
73 |
-
|
74 |
-
# return query_embeddings.cpu().tolist()
|
75 |
-
|
76 |
-
# def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
77 |
-
# """
|
78 |
-
# Processes input data containing base64-encoded images and text queries, decodes them, and generates embeddings.
|
79 |
-
|
80 |
-
# Args:
|
81 |
-
# data (Dict[str, Any]): Dictionary containing input images, text queries, and optional batch size.
|
82 |
-
|
83 |
-
# Returns:
|
84 |
-
# Dict[str, Any]: Dictionary containing generated embeddings for images and text or error messages.
|
85 |
-
# """
|
86 |
-
# images_data = data.get("image", [])
|
87 |
-
# text_data = data.get("text", [])
|
88 |
-
# batch_size = data.get("batch_size", self.default_batch_size)
|
89 |
-
|
90 |
-
# # Decode and process images
|
91 |
-
# images = []
|
92 |
-
# if images_data:
|
93 |
-
# for img_data in images_data:
|
94 |
-
# if isinstance(img_data, str):
|
95 |
-
# try:
|
96 |
-
# image_bytes = base64.b64decode(img_data)
|
97 |
-
# image = Image.open(BytesIO(image_bytes)).convert("RGB")
|
98 |
-
# images.append(image)
|
99 |
-
# except Exception as e:
|
100 |
-
# return {"error": f"Invalid image data: {e}"}
|
101 |
-
# else:
|
102 |
-
# return {"error": "Images should be base64-encoded strings."}
|
103 |
-
|
104 |
-
# image_embeddings = []
|
105 |
-
# for i in range(0, len(images), batch_size):
|
106 |
-
# batch_images = images[i : i + batch_size]
|
107 |
-
# batch_embeddings = self._process_image_batch(batch_images)
|
108 |
-
# image_embeddings.extend(batch_embeddings)
|
109 |
-
|
110 |
-
# # Process text data
|
111 |
-
# text_embeddings = []
|
112 |
-
# if text_data:
|
113 |
-
# for i in range(0, len(text_data), batch_size):
|
114 |
-
# batch_texts = text_data[i : i + batch_size]
|
115 |
-
# batch_text_embeddings = self._process_text_batch(batch_texts)
|
116 |
-
# text_embeddings.extend(batch_text_embeddings)
|
117 |
-
|
118 |
-
# # Compute similarity scores if both image and text embeddings are available
|
119 |
-
# scores = []
|
120 |
-
# if image_embeddings and text_embeddings:
|
121 |
-
# # Convert embeddings to tensors for scoring
|
122 |
-
# image_embeddings_tensor = torch.tensor(image_embeddings).to(self.device)
|
123 |
-
# text_embeddings_tensor = torch.tensor(text_embeddings).to(self.device)
|
124 |
-
|
125 |
-
# with torch.no_grad():
|
126 |
-
# scores = (
|
127 |
-
# self.processor.score_multi_vector(
|
128 |
-
# text_embeddings_tensor, image_embeddings_tensor
|
129 |
-
# )
|
130 |
-
# .cpu()
|
131 |
-
# .tolist()
|
132 |
-
# )
|
133 |
-
|
134 |
-
# return {"image": image_embeddings, "text": text_embeddings, "scores": scores}
|
135 |
-
|
136 |
-
|
137 |
import torch
|
138 |
from typing import Dict, Any, List
|
139 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from typing import Dict, Any, List
|
3 |
from PIL import Image
|