amaye15 commited on
Commit
84d24c2
·
verified ·
1 Parent(s): decedd7

End of training

Browse files
Files changed (7) hide show
  1. README.md +191 -0
  2. config.json +303 -0
  3. config.toml +27 -0
  4. model.safetensors +3 -0
  5. preprocessor_config.json +36 -0
  6. train.ipynb +0 -0
  7. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-base-patch4-window16-256
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - stanford-dogs
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: microsoft-swinv2-base-patch4-window16-256-batch32-lr5e-05-standford-dogs
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: stanford-dogs
21
+ type: stanford-dogs
22
+ config: default
23
+ split: full
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.9467930029154519
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9450299849824627
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.9479779072439513
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.9453246844288115
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # microsoft-swinv2-base-patch4-window16-256-batch32-lr5e-05-standford-dogs
44
+
45
+ This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) on the stanford-dogs dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1856
48
+ - Accuracy: 0.9468
49
+ - F1: 0.9450
50
+ - Precision: 0.9480
51
+ - Recall: 0.9453
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 32
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 4
75
+ - total_train_batch_size: 128
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - training_steps: 1000
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.7437 | 0.0777 | 10 | 4.6395 | 0.0862 | 0.0519 | 0.0499 | 0.0821 |
85
+ | 4.5551 | 0.1553 | 20 | 4.3696 | 0.1713 | 0.1162 | 0.1608 | 0.1573 |
86
+ | 4.2151 | 0.2330 | 30 | 3.8252 | 0.3188 | 0.2681 | 0.4133 | 0.3021 |
87
+ | 3.5619 | 0.3107 | 40 | 2.8929 | 0.6368 | 0.5785 | 0.6552 | 0.6211 |
88
+ | 2.6253 | 0.3883 | 50 | 1.8693 | 0.7850 | 0.7538 | 0.7906 | 0.7733 |
89
+ | 1.8818 | 0.4660 | 60 | 1.1203 | 0.8542 | 0.8406 | 0.8667 | 0.8468 |
90
+ | 1.3652 | 0.5437 | 70 | 0.7330 | 0.8880 | 0.8780 | 0.9039 | 0.8850 |
91
+ | 1.0456 | 0.6214 | 80 | 0.5269 | 0.9084 | 0.9015 | 0.9101 | 0.9050 |
92
+ | 0.9039 | 0.6990 | 90 | 0.4139 | 0.9181 | 0.9093 | 0.9213 | 0.9150 |
93
+ | 0.7965 | 0.7767 | 100 | 0.3441 | 0.9249 | 0.9181 | 0.9315 | 0.9221 |
94
+ | 0.7053 | 0.8544 | 110 | 0.3184 | 0.9225 | 0.9163 | 0.9320 | 0.9208 |
95
+ | 0.6907 | 0.9320 | 120 | 0.2870 | 0.9283 | 0.9261 | 0.9324 | 0.9270 |
96
+ | 0.6293 | 1.0097 | 130 | 0.2760 | 0.9276 | 0.9245 | 0.9329 | 0.9260 |
97
+ | 0.5564 | 1.0874 | 140 | 0.2517 | 0.9339 | 0.9308 | 0.9362 | 0.9320 |
98
+ | 0.5902 | 1.1650 | 150 | 0.2500 | 0.9351 | 0.9308 | 0.9371 | 0.9328 |
99
+ | 0.5269 | 1.2427 | 160 | 0.2429 | 0.9334 | 0.9307 | 0.9370 | 0.9317 |
100
+ | 0.5148 | 1.3204 | 170 | 0.2358 | 0.9393 | 0.9368 | 0.9407 | 0.9373 |
101
+ | 0.4998 | 1.3981 | 180 | 0.2451 | 0.9310 | 0.9270 | 0.9357 | 0.9283 |
102
+ | 0.4797 | 1.4757 | 190 | 0.2425 | 0.9325 | 0.9287 | 0.9377 | 0.9315 |
103
+ | 0.4933 | 1.5534 | 200 | 0.2360 | 0.9281 | 0.9257 | 0.9333 | 0.9266 |
104
+ | 0.4414 | 1.6311 | 210 | 0.2201 | 0.9371 | 0.9343 | 0.9398 | 0.9351 |
105
+ | 0.4401 | 1.7087 | 220 | 0.2248 | 0.9346 | 0.9327 | 0.9375 | 0.9337 |
106
+ | 0.4023 | 1.7864 | 230 | 0.2199 | 0.9344 | 0.9282 | 0.9381 | 0.9317 |
107
+ | 0.4723 | 1.8641 | 240 | 0.2071 | 0.9419 | 0.9389 | 0.9437 | 0.9401 |
108
+ | 0.4593 | 1.9417 | 250 | 0.2123 | 0.9402 | 0.9371 | 0.9421 | 0.9382 |
109
+ | 0.4544 | 2.0194 | 260 | 0.2191 | 0.9385 | 0.9347 | 0.9396 | 0.9371 |
110
+ | 0.3871 | 2.0971 | 270 | 0.2158 | 0.9395 | 0.9372 | 0.9401 | 0.9378 |
111
+ | 0.4162 | 2.1748 | 280 | 0.2073 | 0.9385 | 0.9353 | 0.9396 | 0.9364 |
112
+ | 0.3774 | 2.2524 | 290 | 0.1981 | 0.9397 | 0.9387 | 0.9422 | 0.9387 |
113
+ | 0.3895 | 2.3301 | 300 | 0.2008 | 0.9400 | 0.9361 | 0.9395 | 0.9376 |
114
+ | 0.3804 | 2.4078 | 310 | 0.2018 | 0.9431 | 0.9396 | 0.9443 | 0.9412 |
115
+ | 0.3783 | 2.4854 | 320 | 0.2038 | 0.9422 | 0.9384 | 0.9439 | 0.9403 |
116
+ | 0.4376 | 2.5631 | 330 | 0.1968 | 0.9419 | 0.9404 | 0.9459 | 0.9414 |
117
+ | 0.3696 | 2.6408 | 340 | 0.2011 | 0.9441 | 0.9422 | 0.9464 | 0.9430 |
118
+ | 0.3954 | 2.7184 | 350 | 0.1997 | 0.9417 | 0.9379 | 0.9430 | 0.9399 |
119
+ | 0.3651 | 2.7961 | 360 | 0.1952 | 0.9434 | 0.9392 | 0.9407 | 0.9415 |
120
+ | 0.3646 | 2.8738 | 370 | 0.2045 | 0.9429 | 0.9391 | 0.9459 | 0.9413 |
121
+ | 0.3532 | 2.9515 | 380 | 0.1991 | 0.9427 | 0.9394 | 0.9455 | 0.9413 |
122
+ | 0.342 | 3.0291 | 390 | 0.1958 | 0.9410 | 0.9399 | 0.9441 | 0.9404 |
123
+ | 0.3706 | 3.1068 | 400 | 0.2010 | 0.9419 | 0.9401 | 0.9442 | 0.9406 |
124
+ | 0.3031 | 3.1845 | 410 | 0.2013 | 0.9424 | 0.9407 | 0.9449 | 0.9410 |
125
+ | 0.3345 | 3.2621 | 420 | 0.2022 | 0.9414 | 0.9399 | 0.9438 | 0.9406 |
126
+ | 0.3356 | 3.3398 | 430 | 0.1927 | 0.9470 | 0.9451 | 0.9500 | 0.9453 |
127
+ | 0.3538 | 3.4175 | 440 | 0.1927 | 0.9446 | 0.9422 | 0.9472 | 0.9430 |
128
+ | 0.3505 | 3.4951 | 450 | 0.1909 | 0.9480 | 0.9461 | 0.9498 | 0.9466 |
129
+ | 0.3398 | 3.5728 | 460 | 0.1917 | 0.9453 | 0.9419 | 0.9475 | 0.9436 |
130
+ | 0.3303 | 3.6505 | 470 | 0.1895 | 0.9483 | 0.9453 | 0.9506 | 0.9464 |
131
+ | 0.3685 | 3.7282 | 480 | 0.1883 | 0.9458 | 0.9442 | 0.9468 | 0.9445 |
132
+ | 0.3125 | 3.8058 | 490 | 0.1926 | 0.9441 | 0.9422 | 0.9462 | 0.9426 |
133
+ | 0.3857 | 3.8835 | 500 | 0.1911 | 0.9446 | 0.9426 | 0.9473 | 0.9430 |
134
+ | 0.3407 | 3.9612 | 510 | 0.1825 | 0.9470 | 0.9454 | 0.9486 | 0.9459 |
135
+ | 0.3545 | 4.0388 | 520 | 0.1919 | 0.9444 | 0.9428 | 0.9448 | 0.9432 |
136
+ | 0.306 | 4.1165 | 530 | 0.1901 | 0.9466 | 0.9437 | 0.9471 | 0.9450 |
137
+ | 0.2511 | 4.1942 | 540 | 0.2026 | 0.9431 | 0.9388 | 0.9448 | 0.9410 |
138
+ | 0.3233 | 4.2718 | 550 | 0.1950 | 0.9453 | 0.9433 | 0.9470 | 0.9438 |
139
+ | 0.2793 | 4.3495 | 560 | 0.1973 | 0.9453 | 0.9437 | 0.9466 | 0.9444 |
140
+ | 0.3035 | 4.4272 | 570 | 0.1944 | 0.9470 | 0.9454 | 0.9491 | 0.9459 |
141
+ | 0.2776 | 4.5049 | 580 | 0.2030 | 0.9412 | 0.9393 | 0.9445 | 0.9398 |
142
+ | 0.3204 | 4.5825 | 590 | 0.1959 | 0.9441 | 0.9417 | 0.9468 | 0.9428 |
143
+ | 0.2868 | 4.6602 | 600 | 0.1959 | 0.9429 | 0.9413 | 0.9437 | 0.9414 |
144
+ | 0.3325 | 4.7379 | 610 | 0.1991 | 0.9414 | 0.9389 | 0.9435 | 0.9401 |
145
+ | 0.3255 | 4.8155 | 620 | 0.1894 | 0.9441 | 0.9425 | 0.9448 | 0.9431 |
146
+ | 0.2744 | 4.8932 | 630 | 0.1915 | 0.9434 | 0.9411 | 0.9434 | 0.9421 |
147
+ | 0.2945 | 4.9709 | 640 | 0.1932 | 0.9453 | 0.9415 | 0.9468 | 0.9436 |
148
+ | 0.253 | 5.0485 | 650 | 0.1928 | 0.9448 | 0.9423 | 0.9465 | 0.9435 |
149
+ | 0.2614 | 5.1262 | 660 | 0.1942 | 0.9451 | 0.9441 | 0.9478 | 0.9444 |
150
+ | 0.2699 | 5.2039 | 670 | 0.1924 | 0.9468 | 0.9433 | 0.9479 | 0.9451 |
151
+ | 0.2839 | 5.2816 | 680 | 0.1894 | 0.9461 | 0.9442 | 0.9475 | 0.9447 |
152
+ | 0.2353 | 5.3592 | 690 | 0.1947 | 0.9427 | 0.9407 | 0.9435 | 0.9410 |
153
+ | 0.2627 | 5.4369 | 700 | 0.1964 | 0.9419 | 0.9405 | 0.9440 | 0.9409 |
154
+ | 0.2592 | 5.5146 | 710 | 0.1893 | 0.9456 | 0.9440 | 0.9468 | 0.9441 |
155
+ | 0.2634 | 5.5922 | 720 | 0.1918 | 0.9458 | 0.9431 | 0.9473 | 0.9443 |
156
+ | 0.294 | 5.6699 | 730 | 0.1922 | 0.9446 | 0.9417 | 0.9457 | 0.9428 |
157
+ | 0.2565 | 5.7476 | 740 | 0.1907 | 0.9456 | 0.9432 | 0.9469 | 0.9439 |
158
+ | 0.2657 | 5.8252 | 750 | 0.1902 | 0.9453 | 0.9415 | 0.9464 | 0.9434 |
159
+ | 0.2945 | 5.9029 | 760 | 0.1872 | 0.9453 | 0.9427 | 0.9457 | 0.9439 |
160
+ | 0.2758 | 5.9806 | 770 | 0.1855 | 0.9444 | 0.9432 | 0.9460 | 0.9430 |
161
+ | 0.226 | 6.0583 | 780 | 0.1867 | 0.9470 | 0.9456 | 0.9488 | 0.9457 |
162
+ | 0.2105 | 6.1359 | 790 | 0.1866 | 0.9470 | 0.9446 | 0.9482 | 0.9451 |
163
+ | 0.2524 | 6.2136 | 800 | 0.1891 | 0.9456 | 0.9441 | 0.9470 | 0.9441 |
164
+ | 0.2987 | 6.2913 | 810 | 0.1879 | 0.9463 | 0.9442 | 0.9472 | 0.9447 |
165
+ | 0.2393 | 6.3689 | 820 | 0.1876 | 0.9456 | 0.9439 | 0.9467 | 0.9442 |
166
+ | 0.2779 | 6.4466 | 830 | 0.1870 | 0.9473 | 0.9460 | 0.9486 | 0.9463 |
167
+ | 0.3117 | 6.5243 | 840 | 0.1866 | 0.9470 | 0.9450 | 0.9483 | 0.9455 |
168
+ | 0.2574 | 6.6019 | 850 | 0.1853 | 0.9468 | 0.9449 | 0.9481 | 0.9454 |
169
+ | 0.2307 | 6.6796 | 860 | 0.1886 | 0.9463 | 0.9441 | 0.9475 | 0.9447 |
170
+ | 0.2771 | 6.7573 | 870 | 0.1878 | 0.9456 | 0.9437 | 0.9464 | 0.9440 |
171
+ | 0.2575 | 6.8350 | 880 | 0.1868 | 0.9458 | 0.9440 | 0.9465 | 0.9443 |
172
+ | 0.2422 | 6.9126 | 890 | 0.1857 | 0.9463 | 0.9447 | 0.9466 | 0.9448 |
173
+ | 0.2564 | 6.9903 | 900 | 0.1861 | 0.9451 | 0.9434 | 0.9458 | 0.9437 |
174
+ | 0.222 | 7.0680 | 910 | 0.1866 | 0.9461 | 0.9442 | 0.9471 | 0.9445 |
175
+ | 0.2467 | 7.1456 | 920 | 0.1862 | 0.9456 | 0.9438 | 0.9464 | 0.9441 |
176
+ | 0.2412 | 7.2233 | 930 | 0.1860 | 0.9463 | 0.9449 | 0.9474 | 0.9451 |
177
+ | 0.2518 | 7.3010 | 940 | 0.1857 | 0.9458 | 0.9442 | 0.9466 | 0.9445 |
178
+ | 0.2811 | 7.3786 | 950 | 0.1857 | 0.9463 | 0.9446 | 0.9472 | 0.9448 |
179
+ | 0.2255 | 7.4563 | 960 | 0.1856 | 0.9468 | 0.9451 | 0.9477 | 0.9453 |
180
+ | 0.2425 | 7.5340 | 970 | 0.1857 | 0.9466 | 0.9449 | 0.9478 | 0.9451 |
181
+ | 0.2352 | 7.6117 | 980 | 0.1856 | 0.9468 | 0.9450 | 0.9480 | 0.9453 |
182
+ | 0.2328 | 7.6893 | 990 | 0.1855 | 0.9468 | 0.9450 | 0.9480 | 0.9453 |
183
+ | 0.2353 | 7.7670 | 1000 | 0.1856 | 0.9468 | 0.9450 | 0.9480 | 0.9453 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.40.2
189
+ - Pytorch 2.3.0
190
+ - Datasets 2.19.1
191
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/swinv2-base-patch4-window16-256",
3
+ "architectures": [
4
+ "Swinv2ForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "depths": [
8
+ 2,
9
+ 2,
10
+ 18,
11
+ 2
12
+ ],
13
+ "drop_path_rate": 0.1,
14
+ "embed_dim": 128,
15
+ "encoder_stride": 32,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.0,
18
+ "hidden_size": 1024,
19
+ "id2label": {
20
+ "0": "Affenpinscher",
21
+ "1": "Afghan Hound",
22
+ "2": "African Hunting Dog",
23
+ "3": "Airedale",
24
+ "4": "American Staffordshire Terrier",
25
+ "5": "Appenzeller",
26
+ "6": "Australian Terrier",
27
+ "7": "Basenji",
28
+ "8": "Basset",
29
+ "9": "Beagle",
30
+ "10": "Bedlington Terrier",
31
+ "11": "Bernese Mountain Dog",
32
+ "12": "Black And Tan Coonhound",
33
+ "13": "Blenheim Spaniel",
34
+ "14": "Bloodhound",
35
+ "15": "Bluetick",
36
+ "16": "Border Collie",
37
+ "17": "Border Terrier",
38
+ "18": "Borzoi",
39
+ "19": "Boston Bull",
40
+ "20": "Bouvier Des Flandres",
41
+ "21": "Boxer",
42
+ "22": "Brabancon Griffon",
43
+ "23": "Briard",
44
+ "24": "Brittany Spaniel",
45
+ "25": "Bull Mastiff",
46
+ "26": "Cairn",
47
+ "27": "Cardigan",
48
+ "28": "Chesapeake Bay Retriever",
49
+ "29": "Chihuahua",
50
+ "30": "Chow",
51
+ "31": "Clumber",
52
+ "32": "Cocker Spaniel",
53
+ "33": "Collie",
54
+ "34": "Curly Coated Retriever",
55
+ "35": "Dandie Dinmont",
56
+ "36": "Dhole",
57
+ "37": "Dingo",
58
+ "38": "Doberman",
59
+ "39": "English Foxhound",
60
+ "40": "English Setter",
61
+ "41": "English Springer",
62
+ "42": "Entlebucher",
63
+ "43": "Eskimo Dog",
64
+ "44": "Flat Coated Retriever",
65
+ "45": "French Bulldog",
66
+ "46": "German Shepherd",
67
+ "47": "German Short Haired Pointer",
68
+ "48": "Giant Schnauzer",
69
+ "49": "Golden Retriever",
70
+ "50": "Gordon Setter",
71
+ "51": "Great Dane",
72
+ "52": "Great Pyrenees",
73
+ "53": "Greater Swiss Mountain Dog",
74
+ "54": "Groenendael",
75
+ "55": "Ibizan Hound",
76
+ "56": "Irish Setter",
77
+ "57": "Irish Terrier",
78
+ "58": "Irish Water Spaniel",
79
+ "59": "Irish Wolfhound",
80
+ "60": "Italian Greyhound",
81
+ "61": "Japanese Spaniel",
82
+ "62": "Keeshond",
83
+ "63": "Kelpie",
84
+ "64": "Kerry Blue Terrier",
85
+ "65": "Komondor",
86
+ "66": "Kuvasz",
87
+ "67": "Labrador Retriever",
88
+ "68": "Lakeland Terrier",
89
+ "69": "Leonberg",
90
+ "70": "Lhasa",
91
+ "71": "Malamute",
92
+ "72": "Malinois",
93
+ "73": "Maltese Dog",
94
+ "74": "Mexican Hairless",
95
+ "75": "Miniature Pinscher",
96
+ "76": "Miniature Poodle",
97
+ "77": "Miniature Schnauzer",
98
+ "78": "Newfoundland",
99
+ "79": "Norfolk Terrier",
100
+ "80": "Norwegian Elkhound",
101
+ "81": "Norwich Terrier",
102
+ "82": "Old English Sheepdog",
103
+ "83": "Otterhound",
104
+ "84": "Papillon",
105
+ "85": "Pekinese",
106
+ "86": "Pembroke",
107
+ "87": "Pomeranian",
108
+ "88": "Pug",
109
+ "89": "Redbone",
110
+ "90": "Rhodesian Ridgeback",
111
+ "91": "Rottweiler",
112
+ "92": "Saint Bernard",
113
+ "93": "Saluki",
114
+ "94": "Samoyed",
115
+ "95": "Schipperke",
116
+ "96": "Scotch Terrier",
117
+ "97": "Scottish Deerhound",
118
+ "98": "Sealyham Terrier",
119
+ "99": "Shetland Sheepdog",
120
+ "100": "Shih Tzu",
121
+ "101": "Siberian Husky",
122
+ "102": "Silky Terrier",
123
+ "103": "Soft Coated Wheaten Terrier",
124
+ "104": "Staffordshire Bullterrier",
125
+ "105": "Standard Poodle",
126
+ "106": "Standard Schnauzer",
127
+ "107": "Sussex Spaniel",
128
+ "108": "Tibetan Mastiff",
129
+ "109": "Tibetan Terrier",
130
+ "110": "Toy Poodle",
131
+ "111": "Toy Terrier",
132
+ "112": "Vizsla",
133
+ "113": "Walker Hound",
134
+ "114": "Weimaraner",
135
+ "115": "Welsh Springer Spaniel",
136
+ "116": "West Highland White Terrier",
137
+ "117": "Whippet",
138
+ "118": "Wire Haired Fox Terrier",
139
+ "119": "Yorkshire Terrier"
140
+ },
141
+ "image_size": 256,
142
+ "initializer_range": 0.02,
143
+ "label2id": {
144
+ "Affenpinscher": 0,
145
+ "Afghan Hound": 1,
146
+ "African Hunting Dog": 2,
147
+ "Airedale": 3,
148
+ "American Staffordshire Terrier": 4,
149
+ "Appenzeller": 5,
150
+ "Australian Terrier": 6,
151
+ "Basenji": 7,
152
+ "Basset": 8,
153
+ "Beagle": 9,
154
+ "Bedlington Terrier": 10,
155
+ "Bernese Mountain Dog": 11,
156
+ "Black And Tan Coonhound": 12,
157
+ "Blenheim Spaniel": 13,
158
+ "Bloodhound": 14,
159
+ "Bluetick": 15,
160
+ "Border Collie": 16,
161
+ "Border Terrier": 17,
162
+ "Borzoi": 18,
163
+ "Boston Bull": 19,
164
+ "Bouvier Des Flandres": 20,
165
+ "Boxer": 21,
166
+ "Brabancon Griffon": 22,
167
+ "Briard": 23,
168
+ "Brittany Spaniel": 24,
169
+ "Bull Mastiff": 25,
170
+ "Cairn": 26,
171
+ "Cardigan": 27,
172
+ "Chesapeake Bay Retriever": 28,
173
+ "Chihuahua": 29,
174
+ "Chow": 30,
175
+ "Clumber": 31,
176
+ "Cocker Spaniel": 32,
177
+ "Collie": 33,
178
+ "Curly Coated Retriever": 34,
179
+ "Dandie Dinmont": 35,
180
+ "Dhole": 36,
181
+ "Dingo": 37,
182
+ "Doberman": 38,
183
+ "English Foxhound": 39,
184
+ "English Setter": 40,
185
+ "English Springer": 41,
186
+ "Entlebucher": 42,
187
+ "Eskimo Dog": 43,
188
+ "Flat Coated Retriever": 44,
189
+ "French Bulldog": 45,
190
+ "German Shepherd": 46,
191
+ "German Short Haired Pointer": 47,
192
+ "Giant Schnauzer": 48,
193
+ "Golden Retriever": 49,
194
+ "Gordon Setter": 50,
195
+ "Great Dane": 51,
196
+ "Great Pyrenees": 52,
197
+ "Greater Swiss Mountain Dog": 53,
198
+ "Groenendael": 54,
199
+ "Ibizan Hound": 55,
200
+ "Irish Setter": 56,
201
+ "Irish Terrier": 57,
202
+ "Irish Water Spaniel": 58,
203
+ "Irish Wolfhound": 59,
204
+ "Italian Greyhound": 60,
205
+ "Japanese Spaniel": 61,
206
+ "Keeshond": 62,
207
+ "Kelpie": 63,
208
+ "Kerry Blue Terrier": 64,
209
+ "Komondor": 65,
210
+ "Kuvasz": 66,
211
+ "Labrador Retriever": 67,
212
+ "Lakeland Terrier": 68,
213
+ "Leonberg": 69,
214
+ "Lhasa": 70,
215
+ "Malamute": 71,
216
+ "Malinois": 72,
217
+ "Maltese Dog": 73,
218
+ "Mexican Hairless": 74,
219
+ "Miniature Pinscher": 75,
220
+ "Miniature Poodle": 76,
221
+ "Miniature Schnauzer": 77,
222
+ "Newfoundland": 78,
223
+ "Norfolk Terrier": 79,
224
+ "Norwegian Elkhound": 80,
225
+ "Norwich Terrier": 81,
226
+ "Old English Sheepdog": 82,
227
+ "Otterhound": 83,
228
+ "Papillon": 84,
229
+ "Pekinese": 85,
230
+ "Pembroke": 86,
231
+ "Pomeranian": 87,
232
+ "Pug": 88,
233
+ "Redbone": 89,
234
+ "Rhodesian Ridgeback": 90,
235
+ "Rottweiler": 91,
236
+ "Saint Bernard": 92,
237
+ "Saluki": 93,
238
+ "Samoyed": 94,
239
+ "Schipperke": 95,
240
+ "Scotch Terrier": 96,
241
+ "Scottish Deerhound": 97,
242
+ "Sealyham Terrier": 98,
243
+ "Shetland Sheepdog": 99,
244
+ "Shih Tzu": 100,
245
+ "Siberian Husky": 101,
246
+ "Silky Terrier": 102,
247
+ "Soft Coated Wheaten Terrier": 103,
248
+ "Staffordshire Bullterrier": 104,
249
+ "Standard Poodle": 105,
250
+ "Standard Schnauzer": 106,
251
+ "Sussex Spaniel": 107,
252
+ "Tibetan Mastiff": 108,
253
+ "Tibetan Terrier": 109,
254
+ "Toy Poodle": 110,
255
+ "Toy Terrier": 111,
256
+ "Vizsla": 112,
257
+ "Walker Hound": 113,
258
+ "Weimaraner": 114,
259
+ "Welsh Springer Spaniel": 115,
260
+ "West Highland White Terrier": 116,
261
+ "Whippet": 117,
262
+ "Wire Haired Fox Terrier": 118,
263
+ "Yorkshire Terrier": 119
264
+ },
265
+ "layer_norm_eps": 1e-05,
266
+ "mlp_ratio": 4.0,
267
+ "model_type": "swinv2",
268
+ "num_channels": 3,
269
+ "num_heads": [
270
+ 4,
271
+ 8,
272
+ 16,
273
+ 32
274
+ ],
275
+ "num_layers": 4,
276
+ "out_features": [
277
+ "stage4"
278
+ ],
279
+ "out_indices": [
280
+ 4
281
+ ],
282
+ "patch_size": 4,
283
+ "path_norm": true,
284
+ "pretrained_window_sizes": [
285
+ 0,
286
+ 0,
287
+ 0,
288
+ 0
289
+ ],
290
+ "problem_type": "single_label_classification",
291
+ "qkv_bias": true,
292
+ "stage_names": [
293
+ "stem",
294
+ "stage1",
295
+ "stage2",
296
+ "stage3",
297
+ "stage4"
298
+ ],
299
+ "torch_dtype": "float32",
300
+ "transformers_version": "4.40.2",
301
+ "use_absolute_embeddings": false,
302
+ "window_size": 16
303
+ }
config.toml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [training_args]
2
+ output_dir="/Users/andrewmayes/Openclassroom/CanineNet/code/"
3
+ evaluation_strategy="steps"
4
+ save_strategy="steps"
5
+ learning_rate=5e-5
6
+ #per_device_train_batch_size=32 # 512
7
+ #per_device_eval_batch_size=32 # 512
8
+ # num_train_epochs=5,
9
+ eval_delay=0 # 50
10
+ eval_steps=0.01
11
+ #eval_accumulation_steps
12
+ gradient_accumulation_steps=4
13
+ gradient_checkpointing=true
14
+ optim="adafactor"
15
+ max_steps=1000 # 100
16
+ #logging_dir=""
17
+ #log_level="error"
18
+ load_best_model_at_end=true
19
+ metric_for_best_model="f1"
20
+ greater_is_better=true
21
+ #use_mps_device=true
22
+ logging_steps=0.01
23
+ save_steps=0.01
24
+ #auto_find_batch_size=true
25
+ report_to="mlflow"
26
+ save_total_limit=2
27
+ #hub_model_id="amaye15/SwinV2-Base-Document-Classifier"
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e18f50b9ae839ca8b94bea38205322291e4b0362b4df1f378fee5b9e1e22a2f9
3
+ size 348129336
preprocessor_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format"
15
+ ],
16
+ "do_normalize": true,
17
+ "do_rescale": true,
18
+ "do_resize": true,
19
+ "image_mean": [
20
+ 0.485,
21
+ 0.456,
22
+ 0.406
23
+ ],
24
+ "image_processor_type": "ViTImageProcessor",
25
+ "image_std": [
26
+ 0.229,
27
+ 0.224,
28
+ 0.225
29
+ ],
30
+ "resample": 3,
31
+ "rescale_factor": 0.00392156862745098,
32
+ "size": {
33
+ "height": 256,
34
+ "width": 256
35
+ }
36
+ }
train.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adbf3f8ee263e567b265649efdbd281e949370bde35f578c80c1251f0e7d969d
3
+ size 5112