File size: 19,707 Bytes
6b9cc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Copyright (c) 2024 Advanced Micro Devices, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License") and the MIT License (the "License2");
""" PyTorch ViT model."""


from functools import partial
from einops import rearrange
import torch.nn.functional as F

import collections.abc
import math
from typing import Dict, List, Optional, Set, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    ImageClassifierOutput,
    MaskedImageModelingOutput,
    BaseModelOutputWithNoAttention,
    ImageClassifierOutputWithNoAttention,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_fdvit import FDViTConfig


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "FDViTConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "amd/fdvit_ti"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 260]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "amd/fdvit_ti"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"


#from ..deprecated._archive_maps import VIT_PRETRAINED_MODEL_ARCHIVE_LIST  # noqa: F401, E402

def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).



    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,

    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...

    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for

    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use

    'survival rate' as the argument.



    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class FDViTDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).

    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super().__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f'drop_prob={round(self.drop_prob,3):0.3f}'


class FDViTEmbeddings(nn.Module):
    """

    Construct Patch Embeddings.

    """

    def __init__(self, in_channels, out_channels, patch_size, stride, padding):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=patch_size,
                              stride=stride, padding=padding, bias=True)

    def forward(self, x):
        x = self.conv(x)
        return x


class FDViTAttention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)

    def get_lepe(self, x):
        B, Head, N, C_p = x.shape
        H = W = int(math.sqrt(N))
        x = x.transpose(-2,-1).contiguous().view(B, C_p*Head, H, W)

        lepe = self.get_v(x)
        lepe = lepe.reshape(B, Head, C_p, N).permute(0, 1, 3, 2).contiguous()
        x = x.reshape(B, Head, C_p, N).permute(0, 1, 3, 2).contiguous()
        return x, lepe

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)
        v, lepe = self.get_lepe(v)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v) + lepe
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class FDViTOutput(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,

                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = FDViTAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = FDViTDropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = FDViTOutput(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class FDViTLayer(nn.Module):
    def __init__(self, base_dim, depth, heads, mlp_ratio,

                 drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None):
        super().__init__()
        self.layers = nn.ModuleList([])
        embed_dim = base_dim * heads

        if drop_path_prob is None:
            drop_path_prob = [0.0 for _ in range(depth)]

        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=True,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=drop_path_prob[i],
                norm_layer=partial(nn.LayerNorm, eps=1e-6)
            )
            for i in range(depth)])

    def forward(self, x):
        h, w = x.shape[2:4]
        x = rearrange(x, 'b c h w -> b (h w) c')
        for blk in self.blocks:
            x = blk(x)

        return x


class FDViTPooling(nn.Module):
    def __init__(self, in_feature, out_feature, out_size):
        super().__init__()

        d = torch.linspace(-1, 1, out_size)
        meshx, meshy = torch.meshgrid((d, d))
        self.grid = torch.stack((meshy, meshx), 2)

        self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=3,
                              padding=1, stride=1)
        self.ln = nn.LayerNorm(in_feature)

    def forward(self, x):
        h = w = int(math.sqrt(x.shape[1]))
        x = self.ln(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)

        grid = self.grid.expand(x.shape[0], -1, -1, -1)
        x = F.grid_sample(x, grid.to(x.device).type_as(x),align_corners=True)
        x = self.conv(x)


        return x

class FDViTEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
   
        self.config = config
        image_size, patch_size, stride, base_dims, depth, heads, channels, out_size, mlp_ratio = config.image_size, config.patch_size, config.stride, config.base_dims, config.depth, config.heads, config.channels, config.out_size, config.mlp_ratio
        num_classes = config.num_classes if config.num_classes is not None else 1000
        in_chans = config.in_chans if config.in_chans is not None else 3
        attn_drop_rate = config.attn_drop_rate if config.attn_drop_rate is not None else .0
        drop_rate = config.drop_rate if config.drop_rate is not None else .0
        drop_path_rate = config.drop_path_rate if config.drop_path_rate is not None else .0


        total_block = sum(depth)
        padding = 0
        block_idx = 0

        width = math.floor(
            (image_size + 2 * padding - patch_size) / stride + 1)

        self.base_dims = base_dims
        self.heads = heads
        self.num_classes = num_classes

        self.patch_size = patch_size
        self.pos_embed = nn.Parameter(
            torch.randn(1, base_dims[0] * heads[0], width, width),
            requires_grad=True
        )
        self.patch_embed = FDViTEmbeddings(in_chans, base_dims[0] * heads[0],
                                          patch_size, stride, padding)

        self.pos_drop = nn.Dropout(p=drop_rate)

        self.transformers = nn.ModuleList([])
        self.pools = nn.ModuleList([])
        self.decoders = nn.ModuleList([])

        for stage in range(len(depth)):
            drop_path_prob = [drop_path_rate * i / total_block
                              for i in range(block_idx, block_idx + depth[stage])]
            block_idx += depth[stage]

            self.transformers.append(
                FDViTLayer(base_dims[stage], depth[stage], heads[stage],
                            mlp_ratio,
                            drop_rate, attn_drop_rate, drop_path_prob)
            )
            if stage < len(heads) - 1:
                self.pools.append(
                    FDViTPooling(channels[stage],
                                      channels[stage+1],
                                      out_size[stage+1]
                                      )
                )

        self.embed_dim = base_dims[-1] * heads[-1]


    def forward(self, x, output_hidden_states=False, return_dict=True):
        all_hidden_states = () if output_hidden_states else None

        x = self.patch_embed(x)

        pos_embed = self.pos_embed
        x = self.pos_drop(x + pos_embed)

        for stage in range(len(self.pools)):
            xt = self.transformers[stage](x)
            x = self.pools[stage](xt)

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (xt,)

        x = self.transformers[-1](x)
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (x,)

        if not return_dict:
            return tuple(v for v in [x, all_hidden_states] if v is not None)

        return BaseModelOutputWithNoAttention(last_hidden_state=x, hidden_states=all_hidden_states)
        # x = self.norm(x)
        # return x.mean(dim=1)


class FDViTPreTrainedModel(PreTrainedModel):
    """

    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained

    models.

    """

    config_class = FDViTConfig
    base_model_prefix = "fdvit"
    main_input_name = "pixel_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


FDVIT_START_DOCSTRING = r"""

    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it

    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and

    behavior.



    Parameters:

        config ([`FDViTConfig`]): Model configuration class with all the parameters of the model.

            Initializing with a config file does not load the weights associated with the model, only the

            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.

"""

FDVIT_INPUTS_DOCSTRING = r"""

    Args:

        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):

            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`FDViTImageProcessor.__call__`]

            for details.

"""


@add_start_docstrings(

    "The bare FDViT Model transformer outputting raw hidden-states without any specific head on top.",

    FDVIT_START_DOCSTRING,

)
class FDViTModel(FDViTPreTrainedModel):
    def __init__(self, config: FDViTConfig):
        super().__init__(config)
        self.config = config

        self.encoder = FDViTEncoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(FDVIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=BaseModelOutputWithNoAttention,

        config_class=_CONFIG_FOR_DOC,

        modality="vision",

        expected_output=_EXPECTED_OUTPUT_SHAPE,

    )
    def forward(

        self,

        pixel_values: Optional[torch.Tensor] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, BaseModelOutputWithNoAttention]:

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        encoder_outputs = self.encoder(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        if not return_dict:
            return (sequence_output, None) + encoder_outputs[1:]

        return BaseModelOutputWithNoAttention(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
        )


class FDViTPooler(nn.Module):
    def __init__(self, config: FDViTConfig):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


@add_start_docstrings(

    """

    FDViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of

    the [CLS] token) e.g. for ImageNet.

    """,

    FDVIT_START_DOCSTRING,

)
class FDViTForImageClassification(FDViTPreTrainedModel):
    def __init__(self, config: FDViTConfig) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.fdvit = FDViTModel(config)

        # Final norm
        self.norm = nn.LayerNorm(config.base_dims[-1] * config.heads[-1], eps=1e-6)
        # Classifier head
        self.classifier = nn.Linear(config.base_dims[-1] * config.heads[-1], config.num_classes) if config.num_classes > 0 else nn.Identity()

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(FDVIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        checkpoint=_IMAGE_CLASS_CHECKPOINT,

        output_type=ImageClassifierOutputWithNoAttention,

        config_class=_CONFIG_FOR_DOC,

        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,

    )
    def forward(

        self,

        pixel_values: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,

            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If

            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.fdvit(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(self.norm(sequence_output).mean(dim=1))

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)