File size: 7,157 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
os.environ["OMP_NUM_THREADS"] = "1"
import sys

import glob
import cv2
import tqdm
import numpy as np
from data_gen.utils.mp_feature_extractors.face_landmarker import MediapipeLandmarker
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
import warnings
warnings.filterwarnings('ignore')

import random
random.seed(42)

import pickle
import json
import gzip
from typing import Any

def load_file(filename, is_gzip: bool = False, is_json: bool = False) -> Any:
    if is_json:
        if is_gzip:
            with gzip.open(filename, "r", encoding="utf-8") as f:
                loaded_object = json.load(f)
                return loaded_object
        else:
            with open(filename, "r", encoding="utf-8") as f:
                loaded_object = json.load(f)
                return loaded_object
    else:
        if is_gzip:
            with gzip.open(filename, "rb") as f:
                loaded_object = pickle.load(f)
                return loaded_object
        else:
            with open(filename, "rb") as f:
                loaded_object = pickle.load(f)
                return loaded_object
        
def save_file(filename, content, is_gzip: bool = False, is_json: bool = False) -> None:
    if is_json:
        if is_gzip:
            with gzip.open(filename, "w", encoding="utf-8") as f:
                json.dump(content, f)
        else:
            with open(filename, "w", encoding="utf-8") as f:
                json.dump(content, f)
    else:
        if is_gzip:
            with gzip.open(filename, "wb") as f:
                pickle.dump(content, f)
        else:
            with open(filename, "wb") as f:
                pickle.dump(content, f)

face_landmarker = None

def extract_lms_mediapipe_job(img):
    if img is None:
        return None
    global face_landmarker
    if face_landmarker is None:
        face_landmarker = MediapipeLandmarker()
    lm478 = face_landmarker.extract_lm478_from_img(img)
    return lm478
    
def extract_landmark_job(img_name):
    try:
        # if img_name == 'datasets/PanoHeadGen/raw/images/multi_view/chunk_0/seed0000002.png':
            # print(1)
            # input()
        out_name = img_name.replace("/images_512/", "/lms_2d/").replace(".png","_lms.npy")
        if os.path.exists(out_name):
            print("out exists, skip...")
            return
        try:
            os.makedirs(os.path.dirname(out_name), exist_ok=True)
        except:
            pass
        img = cv2.imread(img_name)[:,:,::-1]

        if img is not None:
            lm468 = extract_lms_mediapipe_job(img)
            if lm468 is not None:
                np.save(out_name, lm468)
        # print("Hahaha, solve one item!!!")
    except Exception as e:
        print(e)
        pass
        
def out_exist_job(img_name):
    out_name = img_name.replace("/images_512/", "/lms_2d/").replace(".png","_lms.npy") 
    if  os.path.exists(out_name):
        return None
    else:
        return img_name

# def get_todo_img_names(img_names):
#     todo_img_names = []
#     for i, res in multiprocess_run_tqdm(out_exist_job, img_names, num_workers=64):
#         if res is not None:
#             todo_img_names.append(res)
#     return todo_img_names


if __name__ == '__main__':
    import argparse, glob, tqdm, random
    parser = argparse.ArgumentParser()
    parser.add_argument("--img_dir", default='/home/tiger/datasets/raw/FFHQ/images_512/')
    parser.add_argument("--ds_name", default='FFHQ')
    parser.add_argument("--num_workers", default=64, type=int)
    parser.add_argument("--process_id", default=0, type=int)
    parser.add_argument("--total_process", default=1, type=int)
    parser.add_argument("--reset", action='store_true')
    parser.add_argument("--img_names_file", default="img_names.pkl", type=str)
    parser.add_argument("--load_img_names", action="store_true")

    args = parser.parse_args()
    print(f"args {args}")
    img_dir = args.img_dir
    img_names_file = os.path.join(img_dir, args.img_names_file)
    if args.load_img_names:
        img_names = load_file(img_names_file)
        print(f"load image names from {img_names_file}")
    else:
        if args.ds_name == 'FFHQ_MV':
            img_name_pattern1 = os.path.join(img_dir, "ref_imgs/*.png")
            img_names1 = glob.glob(img_name_pattern1)
            img_name_pattern2 = os.path.join(img_dir, "mv_imgs/*.png")
            img_names2 = glob.glob(img_name_pattern2)
            img_names = img_names1 + img_names2
            img_names = sorted(img_names)
        elif args.ds_name == 'FFHQ':
            img_name_pattern = os.path.join(img_dir, "*.png")
            img_names = glob.glob(img_name_pattern)
            img_names = sorted(img_names)
        elif args.ds_name == "PanoHeadGen":
            # img_name_patterns = ["ref/*/*.png", "multi_view/*/*.png", "reverse/*/*.png"]
            img_name_patterns = ["ref/*/*.png"]
            img_names = []
            for img_name_pattern in img_name_patterns:
                img_name_pattern_full = os.path.join(img_dir, img_name_pattern)
                img_names_part = glob.glob(img_name_pattern_full)
                img_names.extend(img_names_part)
            img_names = sorted(img_names)
        
    # save image names
    if not args.load_img_names:
        save_file(img_names_file, img_names)
        print(f"save image names in {img_names_file}")
        
    print(f"total images number: {len(img_names)}")
        
        
    process_id = args.process_id
    total_process = args.total_process
    if total_process > 1:
        assert process_id <= total_process -1
        num_samples_per_process = len(img_names) // total_process
        if process_id == total_process:
            img_names = img_names[process_id * num_samples_per_process : ]
        else:
            img_names = img_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
    
    # if not args.reset:
        # img_names = get_todo_img_names(img_names)
        

    print(f"todo_image {img_names[:10]}")
    print(f"processing images number in this process: {len(img_names)}")
    # print(f"todo images number: {len(img_names)}")
    # input()
    # exit()

    if args.num_workers == 1:
        index = 0
        for img_name in tqdm.tqdm(img_names, desc=f"Root process {args.process_id}: extracting MP-based landmark2d"):
            try:
                extract_landmark_job(img_name)
            except Exception as e:
                print(e)
                pass
            if index % max(1, int(len(img_names) * 0.003)) == 0:
                print(f"processed {index} / {len(img_names)}")
                sys.stdout.flush()
            index += 1
    else:
        for i, res in multiprocess_run_tqdm(
            extract_landmark_job, img_names, 
            num_workers=args.num_workers, 
            desc=f"Root {args.process_id}: extracing MP-based landmark2d"): 
            # if index % max(1, int(len(img_names) * 0.003)) == 0:
            print(f"processed {i+1} / {len(img_names)}")
            sys.stdout.flush()
        print(f"Root {args.process_id}: Finished extracting.")