|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class UNet1d(nn.Module): |
|
|
|
def __init__(self, in_channels=3, out_channels=1, init_features=128, multi=None): |
|
super(UNet1d, self).__init__() |
|
if multi is None: |
|
multi = [1, 2, 2, 4] |
|
features = init_features |
|
self.encoder1 = UNet1d._block(in_channels, features * multi[0], name="enc1") |
|
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) |
|
self.encoder2 = UNet1d._block(features * multi[0], features * multi[1], name="enc2") |
|
self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2) |
|
self.encoder3 = UNet1d._block(features * multi[1], features * multi[2], name="enc3") |
|
self.pool3 = nn.MaxPool1d(kernel_size=2, stride=2) |
|
self.encoder4 = UNet1d._block(features * multi[2], features * multi[3], name="enc4") |
|
self.pool4 = nn.MaxPool1d(kernel_size=2, stride=2) |
|
|
|
self.bottleneck = UNet1d._block(features * multi[3], features * multi[3], name="bottleneck") |
|
|
|
self.upconv4 = nn.ConvTranspose1d( |
|
features * multi[3], features * multi[3], kernel_size=2, stride=2 |
|
) |
|
self.decoder4 = UNet1d._block((features * multi[3]) * 2, features * multi[3], name="dec4") |
|
self.upconv3 = nn.ConvTranspose1d( |
|
features * multi[3], features * multi[2], kernel_size=2, stride=2 |
|
) |
|
self.decoder3 = UNet1d._block((features * multi[2]) * 2, features * multi[2], name="dec3") |
|
self.upconv2 = nn.ConvTranspose1d( |
|
features * multi[2], features * multi[1], kernel_size=2, stride=2 |
|
) |
|
self.decoder2 = UNet1d._block((features * multi[1]) * 2, features * multi[1], name="dec2") |
|
self.upconv1 = nn.ConvTranspose1d( |
|
features * multi[1], features * multi[0], kernel_size=2, stride=2 |
|
) |
|
self.decoder1 = UNet1d._block(features * multi[0] * 2, features * multi[0], name="dec1") |
|
|
|
self.conv = nn.Conv1d( |
|
in_channels=features * multi[0], out_channels=out_channels, kernel_size=1 |
|
) |
|
|
|
def forward(self, x, nonpadding=None): |
|
if nonpadding is None: |
|
nonpadding = torch.ones_like(x)[:, :, :1] |
|
enc1 = self.encoder1(x.transpose(1, 2)) * nonpadding.transpose(1, 2) |
|
enc2 = self.encoder2(self.pool1(enc1)) |
|
enc3 = self.encoder3(self.pool2(enc2)) |
|
enc4 = self.encoder4(self.pool3(enc3)) |
|
|
|
bottleneck = self.bottleneck(self.pool4(enc4)) |
|
|
|
dec4 = self.upconv4(bottleneck) |
|
dec4 = torch.cat((dec4, enc4), dim=1) |
|
dec4 = self.decoder4(dec4) |
|
dec3 = self.upconv3(dec4) |
|
dec3 = torch.cat((dec3, enc3), dim=1) |
|
dec3 = self.decoder3(dec3) |
|
dec2 = self.upconv2(dec3) |
|
dec2 = torch.cat((dec2, enc2), dim=1) |
|
dec2 = self.decoder2(dec2) |
|
dec1 = self.upconv1(dec2) |
|
dec1 = torch.cat((dec1, enc1), dim=1) |
|
dec1 = self.decoder1(dec1) |
|
return self.conv(dec1).transpose(1, 2) * nonpadding |
|
|
|
@staticmethod |
|
def _block(in_channels, features, name): |
|
return nn.Sequential( |
|
OrderedDict( |
|
[ |
|
( |
|
name + "conv1", |
|
nn.Conv1d( |
|
in_channels=in_channels, |
|
out_channels=features, |
|
kernel_size=5, |
|
padding=2, |
|
bias=False, |
|
), |
|
), |
|
(name + "norm1", nn.GroupNorm(4, features)), |
|
(name + "tanh1", nn.Tanh()), |
|
( |
|
name + "conv2", |
|
nn.Conv1d( |
|
in_channels=features, |
|
out_channels=features, |
|
kernel_size=5, |
|
padding=2, |
|
bias=False, |
|
), |
|
), |
|
(name + "norm2", nn.GroupNorm(4, features)), |
|
(name + "tanh2", nn.Tanh()), |
|
] |
|
) |
|
) |
|
|
|
|
|
class UNet2d(nn.Module): |
|
def __init__(self, in_channels=3, out_channels=1, init_features=32, multi=None): |
|
super(UNet2d, self).__init__() |
|
|
|
features = init_features |
|
self.encoder1 = UNet2d._block(in_channels, features * multi[0], name="enc1") |
|
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.encoder2 = UNet2d._block(features * multi[0], features * multi[1], name="enc2") |
|
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.encoder3 = UNet2d._block(features * multi[1], features * multi[2], name="enc3") |
|
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
self.encoder4 = UNet2d._block(features * multi[2], features * multi[3], name="enc4") |
|
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.bottleneck = UNet2d._block(features * multi[3], features * multi[3], name="bottleneck") |
|
|
|
self.upconv4 = nn.ConvTranspose2d( |
|
features * multi[3], features * multi[3], kernel_size=2, stride=2 |
|
) |
|
self.decoder4 = UNet2d._block((features * multi[3]) * 2, features * multi[3], name="dec4") |
|
self.upconv3 = nn.ConvTranspose2d( |
|
features * multi[3], features * multi[2], kernel_size=2, stride=2 |
|
) |
|
self.decoder3 = UNet2d._block((features * multi[2]) * 2, features * multi[2], name="dec3") |
|
self.upconv2 = nn.ConvTranspose2d( |
|
features * multi[2], features * multi[1], kernel_size=2, stride=2 |
|
) |
|
self.decoder2 = UNet2d._block((features * multi[1]) * 2, features * multi[1], name="dec2") |
|
self.upconv1 = nn.ConvTranspose2d( |
|
features * multi[1], features * multi[0], kernel_size=2, stride=2 |
|
) |
|
self.decoder1 = UNet2d._block(features * multi[0] * 2, features * multi[0], name="dec1") |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels=features * multi[0], out_channels=out_channels, kernel_size=1 |
|
) |
|
|
|
def forward(self, x): |
|
enc1 = self.encoder1(x) |
|
enc2 = self.encoder2(self.pool1(enc1)) |
|
enc3 = self.encoder3(self.pool2(enc2)) |
|
enc4 = self.encoder4(self.pool3(enc3)) |
|
|
|
bottleneck = self.bottleneck(self.pool4(enc4)) |
|
|
|
dec4 = self.upconv4(bottleneck) |
|
dec4 = torch.cat((dec4, enc4), dim=1) |
|
dec4 = self.decoder4(dec4) |
|
dec3 = self.upconv3(dec4) |
|
dec3 = torch.cat((dec3, enc3), dim=1) |
|
dec3 = self.decoder3(dec3) |
|
dec2 = self.upconv2(dec3) |
|
dec2 = torch.cat((dec2, enc2), dim=1) |
|
dec2 = self.decoder2(dec2) |
|
dec1 = self.upconv1(dec2) |
|
dec1 = torch.cat((dec1, enc1), dim=1) |
|
dec1 = self.decoder1(dec1) |
|
x = self.conv(dec1) |
|
return x |
|
|
|
@staticmethod |
|
def _block(in_channels, features, name): |
|
return nn.Sequential( |
|
OrderedDict( |
|
[ |
|
( |
|
name + "conv1", |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=features, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
), |
|
(name + "norm1", nn.GroupNorm(4, features)), |
|
(name + "tanh1", nn.Tanh()), |
|
( |
|
name + "conv2", |
|
nn.Conv2d( |
|
in_channels=features, |
|
out_channels=features, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
), |
|
(name + "norm2", nn.GroupNorm(4, features)), |
|
(name + "tanh2", nn.Tanh()), |
|
(name + "conv3", nn.Conv2d( |
|
in_channels=features, |
|
out_channels=features, |
|
kernel_size=1, |
|
padding=0, |
|
bias=True, |
|
)), |
|
] |
|
) |
|
) |
|
|