|
import os |
|
import wget |
|
import math |
|
import numpy as np |
|
import librosa |
|
import librosa.display |
|
import matplotlib.pyplot as plt |
|
from scipy.signal import argrelextrema |
|
from scipy import linalg |
|
import torch |
|
|
|
from .motion_encoder import VAESKConv |
|
|
|
|
|
class L1div(object): |
|
def __init__(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
def run(self, results): |
|
self.counter += results.shape[0] |
|
mean = np.mean(results, 0) |
|
for i in range(results.shape[0]): |
|
results[i, :] = abs(results[i, :] - mean) |
|
sum_l1 = np.sum(results) |
|
self.sum += sum_l1 |
|
def avg(self): |
|
return self.sum/self.counter |
|
def reset(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
|
|
class SRGR(object): |
|
def __init__(self, threshold=0.1, joints=47, joint_dim=3): |
|
self.threshold = threshold |
|
self.pose_dimes = joints |
|
self.joint_dim = joint_dim |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
def run(self, results, targets, semantic=None, verbose=False): |
|
if semantic is None: |
|
semantic = np.ones(results.shape[0]) |
|
avg_weight = 1.0 |
|
else: |
|
|
|
avg_weight = 0.165 |
|
results = results.reshape(-1, self.pose_dimes, self.joint_dim) |
|
targets = targets.reshape(-1, self.pose_dimes, self.joint_dim) |
|
semantic = semantic.reshape(-1) |
|
diff = np.linalg.norm(results-targets, axis=2) |
|
if verbose: print(diff) |
|
success = np.where(diff<self.threshold, 1.0, 0.0) |
|
for i in range(success.shape[0]): |
|
success[i, :] *= semantic[i] * (1/avg_weight) |
|
rate = np.sum(success)/(success.shape[0]*success.shape[1]) |
|
self.counter += success.shape[0] |
|
self.sum += (rate*success.shape[0]) |
|
return rate |
|
|
|
def avg(self): |
|
return self.sum/self.counter |
|
|
|
def reset(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
|
|
class BC(object): |
|
def __init__(self, download_path=None, sigma=0.3, order=7, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]): |
|
self.sigma = sigma |
|
self.order = order |
|
self.upper_body = upper_body |
|
self.pose_data = [] |
|
if download_path is not None: |
|
os.makedirs(download_path, exist_ok=True) |
|
model_file_path = os.path.join(download_path, "mean_vel_smplxflame_30.npy") |
|
if not os.path.exists(model_file_path): |
|
print(f"Downloading {model_file_path}") |
|
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy", model_file_path) |
|
self.mmae = np.load(os.path.join(download_path, "mean_vel_smplxflame_30.npy")) if download_path is not None else None |
|
self.threshold = 0.10 |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000): |
|
hop_length = 512 |
|
if without_file: |
|
y = wave |
|
else: |
|
y, sr = librosa.load(wave, sr=sr_audio) |
|
|
|
short_y = y[t_start:t_end] if t_start is not None else y |
|
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time') |
|
return onset_t |
|
|
|
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False): |
|
data_each_file = [] |
|
if without_file: |
|
for line_data_np in pose: |
|
data_each_file.append(line_data_np) |
|
else: |
|
with open(pose, "r") as f: |
|
for i, line_data in enumerate(f.readlines()): |
|
if i < 432: |
|
continue |
|
line_data_np = np.fromstring(line_data, sep=" ") |
|
if pose_fps == 15 and i % 2 == 0: |
|
continue |
|
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121]], 0)) |
|
|
|
data_each_file = np.array(data_each_file) |
|
|
|
|
|
joints = data_each_file.transpose(1, 0) |
|
dt = 1 / pose_fps |
|
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt |
|
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) |
|
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt |
|
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3) |
|
|
|
|
|
if self.mmae is not None: |
|
vel = np.linalg.norm(vel, axis=2) / self.mmae |
|
else: |
|
print("Warning: mmae is not provided, using max value of vel as mmae") |
|
self.mmae = np.linalg.norm(vel, axis=2).max() |
|
vel = np.linalg.norm(vel, axis=2) / self.mmae |
|
|
|
|
|
beat_vel_all = [] |
|
for i in range(vel.shape[1]): |
|
vel_mask = np.where(vel[:, i] > self.threshold) |
|
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order) |
|
beat_vel_list = [j for j in beat_vel[0] if j in vel_mask[0]] |
|
beat_vel_all.append(np.array(beat_vel_list)) |
|
return beat_vel_all |
|
|
|
def load_data(self, wave, pose, t_start, t_end, pose_fps): |
|
onset_raw = self.load_audio(wave, t_start, t_end) |
|
beat_vel_all = self.load_pose(pose, t_start, t_end, pose_fps) |
|
return onset_raw, beat_vel_all |
|
|
|
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60): |
|
onset_raw = self.load_audio(wave, t_start, t_end) |
|
dur = t_end - t_start |
|
for i in range(num_random): |
|
beat_vel_all = self.load_pose(pose, i, i+dur, pose_fps) |
|
dis_all_b2a = self.calculate_align(onset_raw, beat_vel_all) |
|
print(f"{i}s: ", dis_all_b2a) |
|
|
|
@staticmethod |
|
def plot_onsets(audio, sr, onset_times_1, onset_times_2): |
|
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True) |
|
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0]) |
|
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1]) |
|
|
|
for onset in onset_times_1: |
|
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1') |
|
axarr[0].legend() |
|
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude') |
|
|
|
for onset in onset_times_2: |
|
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2') |
|
axarr[1].legend() |
|
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude') |
|
|
|
handles, labels = plt.gca().get_legend_handles_labels() |
|
by_label = dict(zip(labels, handles)) |
|
plt.legend(by_label.values(), by_label.keys()) |
|
plt.title("Audio waveform with Onsets") |
|
plt.savefig("./onset.png", dpi=500) |
|
|
|
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms): |
|
fig, ax = plt.subplots(nrows=4, sharex=True) |
|
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), y_axis='log', x_axis='time', ax=ax[0]) |
|
ax[1].plot(self.times, self.oenv, label='Onset strength') |
|
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r') |
|
ax[1].legend() |
|
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r') |
|
ax[2].legend() |
|
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r') |
|
ax[3].legend() |
|
fig.savefig("./onset.png", dpi=500) |
|
|
|
@staticmethod |
|
def motion_frames2time(vel, offset, pose_fps): |
|
return vel / pose_fps + offset |
|
|
|
@staticmethod |
|
def GAHR(a, b, sigma): |
|
dis_all_b2a = 0 |
|
for b_each in b: |
|
l2_min = min(abs(a_each - b_each) for a_each in a) |
|
dis_all_b2a += math.exp(-(l2_min ** 2) / (2 * sigma ** 2)) |
|
return dis_all_b2a / len(b) |
|
|
|
@staticmethod |
|
def fix_directed_GAHR(a, b, sigma): |
|
a = BC.motion_frames2time(a, 0, 30) |
|
b = BC.motion_frames2time(b, 0, 30) |
|
a = [0] + a + [len(a)/30] |
|
b = [0] + b + [len(b)/30] |
|
return BC.GAHR(a, b, sigma) |
|
|
|
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30): |
|
avg_dis_all_b2a_list = [] |
|
for its, beat_vel_each in enumerate(beat_vel): |
|
if its not in self.upper_body: |
|
continue |
|
if beat_vel_each.size == 0: |
|
avg_dis_all_b2a_list.append(0) |
|
continue |
|
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps) |
|
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, onset_bt_rms, self.sigma)) |
|
self.counter += 1 |
|
self.sum += sum(avg_dis_all_b2a_list) / len(self.upper_body) |
|
|
|
def avg(self): |
|
return self.sum/self.counter |
|
|
|
def reset(self): |
|
self.counter = 0 |
|
self.sum = 0 |
|
|
|
class Arg(object): |
|
def __init__(self): |
|
self.vae_length = 240 |
|
self.vae_test_dim = 330 |
|
self.vae_test_len = 32 |
|
self.vae_layer = 4 |
|
self.vae_test_stride = 20 |
|
self.vae_grow = [1, 1, 2, 1] |
|
self.variational = False |
|
|
|
class FGD(object): |
|
def __init__(self, download_path="./emage/"): |
|
if download_path is not None: |
|
os.makedirs(download_path, exist_ok=True) |
|
model_file_path = os.path.join(download_path, "AESKConv_240_100.bin") |
|
smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx") |
|
smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz") |
|
if not os.path.exists(model_file_path): |
|
print(f"Downloading {model_file_path}") |
|
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/AESKConv_240_100.bin", model_file_path) |
|
|
|
os.makedirs(smplx_model_dir, exist_ok=True) |
|
if not os.path.exists(smplx_model_file_path): |
|
print(f"Downloading {smplx_model_file_path}") |
|
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz", smplx_model_file_path) |
|
args = Arg() |
|
self.eval_model = VAESKConv(args) |
|
old_stat = torch.load(download_path+"AESKConv_240_100.bin")["model_state"] |
|
new_stat = {} |
|
for k, v in old_stat.items(): |
|
|
|
new_key = k.replace('module.', '') if 'module.' in k else k |
|
new_stat[new_key] = v |
|
self.eval_model.load_state_dict(new_stat) |
|
|
|
self.eval_model.eval() |
|
if torch.cuda.is_available(): |
|
self.eval_model.cuda() |
|
|
|
self.pred_features = [] |
|
self.target_features = [] |
|
|
|
def update(self, pred, target): |
|
""" |
|
Accumulate the feature representations of predictions and targets. |
|
pred: torch.Tensor of predicted data |
|
target: torch.Tensor of target data |
|
""" |
|
self.pred_features.append(self.get_feature(pred).reshape(-1, 240)) |
|
self.target_features.append(self.get_feature(target).reshape(-1, 240)) |
|
|
|
def compute(self): |
|
""" |
|
Compute the Frechet Distance between the accumulated features. |
|
Returns: |
|
frechet_distance (float): The FVD score between prediction and target features. |
|
""" |
|
pred_features = np.concatenate(self.pred_features, axis=0) |
|
target_features = np.concatenate(self.target_features, axis=0) |
|
print(pred_features.shape, target_features.shape) |
|
return self.frechet_distance(pred_features, target_features) |
|
|
|
def reset(self): |
|
""" Reset the accumulated feature lists. """ |
|
self.pred_features = [] |
|
self.target_features = [] |
|
|
|
def get_feature(self, data): |
|
""" |
|
Pass the data through the evaluation model to get the feature representation. |
|
data: torch.Tensor of data (e.g., predictions or targets) |
|
Returns: |
|
feature: numpy array of extracted features |
|
""" |
|
with torch.no_grad(): |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
feature = self.eval_model.map2latent(data).cpu().numpy() |
|
return feature |
|
|
|
@staticmethod |
|
def frechet_distance(samples_A, samples_B): |
|
""" |
|
Compute the Frechet Distance between two sets of features. |
|
samples_A: numpy array of features from set A (e.g., predictions) |
|
samples_B: numpy array of features from set B (e.g., targets) |
|
Returns: |
|
frechet_dist (float): The Frechet Distance between the two feature sets. |
|
""" |
|
A_mu = np.mean(samples_A, axis=0) |
|
A_sigma = np.cov(samples_A, rowvar=False) |
|
B_mu = np.mean(samples_B, axis=0) |
|
B_sigma = np.cov(samples_B, rowvar=False) |
|
try: |
|
frechet_dist = FGD.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma) |
|
except ValueError: |
|
frechet_dist = 1e+10 |
|
return frechet_dist |
|
|
|
@staticmethod |
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
""" |
|
Calculate the Frechet Distance between two multivariate Gaussians. |
|
mu1: Mean vector of the first distribution (generated data). |
|
sigma1: Covariance matrix of the first distribution. |
|
mu2: Mean vector of the second distribution (target data). |
|
sigma2: Covariance matrix of the second distribution. |
|
Returns: |
|
Frechet Distance (float) |
|
""" |
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
|
|
|
|
|
|
|
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError(f'Imaginary component {m}') |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) + |
|
np.trace(sigma2) - 2 * tr_covmean) |