TANGO / emage /mertic.py
ameerazam08's picture
Upload folder using huggingface_hub
af98a6c verified
raw
history blame
15 kB
import os
import wget
import math
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
from scipy import linalg
import torch
from .motion_encoder import VAESKConv
class L1div(object):
def __init__(self):
self.counter = 0
self.sum = 0
def run(self, results):
self.counter += results.shape[0]
mean = np.mean(results, 0)
for i in range(results.shape[0]):
results[i, :] = abs(results[i, :] - mean)
sum_l1 = np.sum(results)
self.sum += sum_l1
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class SRGR(object):
def __init__(self, threshold=0.1, joints=47, joint_dim=3):
self.threshold = threshold
self.pose_dimes = joints
self.joint_dim = joint_dim
self.counter = 0
self.sum = 0
def run(self, results, targets, semantic=None, verbose=False):
if semantic is None:
semantic = np.ones(results.shape[0])
avg_weight = 1.0
else:
# srgr == 0.165 when all success, scale range to [0, 1]
avg_weight = 0.165
results = results.reshape(-1, self.pose_dimes, self.joint_dim)
targets = targets.reshape(-1, self.pose_dimes, self.joint_dim)
semantic = semantic.reshape(-1)
diff = np.linalg.norm(results-targets, axis=2) # T, J
if verbose: print(diff)
success = np.where(diff<self.threshold, 1.0, 0.0)
for i in range(success.shape[0]):
success[i, :] *= semantic[i] * (1/avg_weight)
rate = np.sum(success)/(success.shape[0]*success.shape[1])
self.counter += success.shape[0]
self.sum += (rate*success.shape[0])
return rate
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class BC(object):
def __init__(self, download_path=None, sigma=0.3, order=7, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]):
self.sigma = sigma
self.order = order
self.upper_body = upper_body
self.pose_data = []
if download_path is not None:
os.makedirs(download_path, exist_ok=True)
model_file_path = os.path.join(download_path, "mean_vel_smplxflame_30.npy")
if not os.path.exists(model_file_path):
print(f"Downloading {model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy", model_file_path)
self.mmae = np.load(os.path.join(download_path, "mean_vel_smplxflame_30.npy")) if download_path is not None else None
self.threshold = 0.10
self.counter = 0
self.sum = 0
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000):
hop_length = 512
if without_file:
y = wave
else:
y, sr = librosa.load(wave, sr=sr_audio)
short_y = y[t_start:t_end] if t_start is not None else y
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time')
return onset_t
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False):
data_each_file = []
if without_file:
for line_data_np in pose:
data_each_file.append(line_data_np)
else:
with open(pose, "r") as f:
for i, line_data in enumerate(f.readlines()):
if i < 432:
continue
line_data_np = np.fromstring(line_data, sep=" ")
if pose_fps == 15 and i % 2 == 0:
continue
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121]], 0))
data_each_file = np.array(data_each_file)# T*165
# print(data_each_file.shape)
joints = data_each_file.transpose(1, 0)
dt = 1 / pose_fps
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3)
# print(vel.shape)
if self.mmae is not None:
vel = np.linalg.norm(vel, axis=2) / self.mmae
else:
print("Warning: mmae is not provided, using max value of vel as mmae")
self.mmae = np.linalg.norm(vel, axis=2).max()
vel = np.linalg.norm(vel, axis=2) / self.mmae
# print(vel.shape) # T*J
beat_vel_all = []
for i in range(vel.shape[1]):
vel_mask = np.where(vel[:, i] > self.threshold)
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order)
beat_vel_list = [j for j in beat_vel[0] if j in vel_mask[0]]
beat_vel_all.append(np.array(beat_vel_list))
return beat_vel_all
def load_data(self, wave, pose, t_start, t_end, pose_fps):
onset_raw = self.load_audio(wave, t_start, t_end)
beat_vel_all = self.load_pose(pose, t_start, t_end, pose_fps)
return onset_raw, beat_vel_all
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60):
onset_raw = self.load_audio(wave, t_start, t_end)
dur = t_end - t_start
for i in range(num_random):
beat_vel_all = self.load_pose(pose, i, i+dur, pose_fps)
dis_all_b2a = self.calculate_align(onset_raw, beat_vel_all)
print(f"{i}s: ", dis_all_b2a)
@staticmethod
def plot_onsets(audio, sr, onset_times_1, onset_times_2):
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0])
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1])
for onset in onset_times_1:
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1')
axarr[0].legend()
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude')
for onset in onset_times_2:
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2')
axarr[1].legend()
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude')
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
plt.title("Audio waveform with Onsets")
plt.savefig("./onset.png", dpi=500)
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms):
fig, ax = plt.subplots(nrows=4, sharex=True)
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), y_axis='log', x_axis='time', ax=ax[0])
ax[1].plot(self.times, self.oenv, label='Onset strength')
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r')
ax[1].legend()
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r')
ax[2].legend()
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r')
ax[3].legend()
fig.savefig("./onset.png", dpi=500)
@staticmethod
def motion_frames2time(vel, offset, pose_fps):
return vel / pose_fps + offset
@staticmethod
def GAHR(a, b, sigma):
dis_all_b2a = 0
for b_each in b:
l2_min = min(abs(a_each - b_each) for a_each in a)
dis_all_b2a += math.exp(-(l2_min ** 2) / (2 * sigma ** 2))
return dis_all_b2a / len(b)
@staticmethod
def fix_directed_GAHR(a, b, sigma):
a = BC.motion_frames2time(a, 0, 30)
b = BC.motion_frames2time(b, 0, 30)
a = [0] + a + [len(a)/30]
b = [0] + b + [len(b)/30]
return BC.GAHR(a, b, sigma)
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30):
avg_dis_all_b2a_list = []
for its, beat_vel_each in enumerate(beat_vel):
if its not in self.upper_body:
continue
if beat_vel_each.size == 0:
avg_dis_all_b2a_list.append(0)
continue
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps)
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, onset_bt_rms, self.sigma))
self.counter += 1
self.sum += sum(avg_dis_all_b2a_list) / len(self.upper_body)
def avg(self):
return self.sum/self.counter
def reset(self):
self.counter = 0
self.sum = 0
class Arg(object):
def __init__(self):
self.vae_length = 240
self.vae_test_dim = 330
self.vae_test_len = 32
self.vae_layer = 4
self.vae_test_stride = 20
self.vae_grow = [1, 1, 2, 1]
self.variational = False
class FGD(object):
def __init__(self, download_path="./emage/"):
if download_path is not None:
os.makedirs(download_path, exist_ok=True)
model_file_path = os.path.join(download_path, "AESKConv_240_100.bin")
smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx")
smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz")
if not os.path.exists(model_file_path):
print(f"Downloading {model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/AESKConv_240_100.bin", model_file_path)
os.makedirs(smplx_model_dir, exist_ok=True)
if not os.path.exists(smplx_model_file_path):
print(f"Downloading {smplx_model_file_path}")
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz", smplx_model_file_path)
args = Arg()
self.eval_model = VAESKConv(args) # Assumes LocalEncoder is defined elsewhere
old_stat = torch.load(download_path+"AESKConv_240_100.bin")["model_state"]
new_stat = {}
for k, v in old_stat.items():
# If 'module.' is in the key, remove it
new_key = k.replace('module.', '') if 'module.' in k else k
new_stat[new_key] = v
self.eval_model.load_state_dict(new_stat)
self.eval_model.eval()
if torch.cuda.is_available():
self.eval_model.cuda()
self.pred_features = []
self.target_features = []
def update(self, pred, target):
"""
Accumulate the feature representations of predictions and targets.
pred: torch.Tensor of predicted data
target: torch.Tensor of target data
"""
self.pred_features.append(self.get_feature(pred).reshape(-1, 240))
self.target_features.append(self.get_feature(target).reshape(-1, 240))
def compute(self):
"""
Compute the Frechet Distance between the accumulated features.
Returns:
frechet_distance (float): The FVD score between prediction and target features.
"""
pred_features = np.concatenate(self.pred_features, axis=0)
target_features = np.concatenate(self.target_features, axis=0)
print(pred_features.shape, target_features.shape)
return self.frechet_distance(pred_features, target_features)
def reset(self):
""" Reset the accumulated feature lists. """
self.pred_features = []
self.target_features = []
def get_feature(self, data):
"""
Pass the data through the evaluation model to get the feature representation.
data: torch.Tensor of data (e.g., predictions or targets)
Returns:
feature: numpy array of extracted features
"""
with torch.no_grad():
if torch.cuda.is_available():
data = data.cuda()
feature = self.eval_model.map2latent(data).cpu().numpy()
return feature
@staticmethod
def frechet_distance(samples_A, samples_B):
"""
Compute the Frechet Distance between two sets of features.
samples_A: numpy array of features from set A (e.g., predictions)
samples_B: numpy array of features from set B (e.g., targets)
Returns:
frechet_dist (float): The Frechet Distance between the two feature sets.
"""
A_mu = np.mean(samples_A, axis=0)
A_sigma = np.cov(samples_A, rowvar=False)
B_mu = np.mean(samples_B, axis=0)
B_sigma = np.cov(samples_B, rowvar=False)
try:
frechet_dist = FGD.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma)
except ValueError:
frechet_dist = 1e+10
return frechet_dist
@staticmethod
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""
Calculate the Frechet Distance between two multivariate Gaussians.
mu1: Mean vector of the first distribution (generated data).
sigma1: Covariance matrix of the first distribution.
mu2: Mean vector of the second distribution (target data).
sigma2: Covariance matrix of the second distribution.
Returns:
Frechet Distance (float)
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
# if not np.isfinite(covmean).all():
# msg = ('Frechet Distance calculation produces singular product; '
# 'adding %s to diagonal of covariance estimates') % eps
# print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError(f'Imaginary component {m}')
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)