File size: 2,158 Bytes
8e08a15
 
 
 
 
c93c8ea
cd79d0b
8e08a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93c8ea
 
6d84943
8e08a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93c8ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
- token-classification
- PyTorch
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.9314389558896415
    - name: Recall
      type: recall
      value: 0.9488387748232918
    - name: F1
      type: f1
      value: 0.9400583576490206
    - name: Accuracy
      type: accuracy
      value: 0.9864749514334491
language:
- en
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0634
- Precision: 0.9314
- Recall: 0.9488
- F1: 0.9401
- Accuracy: 0.9865

## Model description

More information needed

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.068         | 1.0   | 1756 | 0.0702          | 0.8955    | 0.9286 | 0.9118 | 0.9801   |
| 0.029         | 2.0   | 3512 | 0.0671          | 0.9314    | 0.9455 | 0.9384 | 0.9854   |
| 0.0173        | 3.0   | 5268 | 0.0634          | 0.9314    | 0.9488 | 0.9401 | 0.9865   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1