File size: 2,158 Bytes
8e08a15 c93c8ea cd79d0b 8e08a15 c93c8ea 6d84943 8e08a15 c93c8ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
- token-classification
- PyTorch
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9314389558896415
- name: Recall
type: recall
value: 0.9488387748232918
- name: F1
type: f1
value: 0.9400583576490206
- name: Accuracy
type: accuracy
value: 0.9864749514334491
language:
- en
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0634
- Precision: 0.9314
- Recall: 0.9488
- F1: 0.9401
- Accuracy: 0.9865
## Model description
More information needed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.068 | 1.0 | 1756 | 0.0702 | 0.8955 | 0.9286 | 0.9118 | 0.9801 |
| 0.029 | 2.0 | 3512 | 0.0671 | 0.9314 | 0.9455 | 0.9384 | 0.9854 |
| 0.0173 | 3.0 | 5268 | 0.0634 | 0.9314 | 0.9488 | 0.9401 | 0.9865 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |