Update README.md
Browse files
README.md
CHANGED
@@ -38,13 +38,23 @@ This model can be easily loaded using the `AutoModelForCausalLM` functionality:
|
|
38 |
|
39 |
```python
|
40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
-
|
42 |
-
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono")
|
43 |
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
49 |
```
|
50 |
|
|
|
38 |
|
39 |
```python
|
40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
+
from peft import PeftConfig, PeftModel
|
|
|
42 |
|
43 |
+
model_name = "ammarnasr/codegen-350M-mono-ruby"
|
44 |
+
peft_config = PeftConfig.from_pretrained(model_name)
|
45 |
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
47 |
+
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path)
|
49 |
+
model = PeftModel.from_pretrained(model, model_name)
|
50 |
+
|
51 |
+
model.print_trainable_parameters()
|
52 |
+
|
53 |
+
text = "def hello_world"
|
54 |
+
|
55 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
56 |
+
generated_ids = model.generate(input_ids=input_ids, max_length=100)
|
57 |
+
print('Generated: \n')
|
58 |
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
59 |
```
|
60 |
|