amonfortc commited on
Commit
19f2b5b
·
verified ·
1 Parent(s): 43d6f95

Upload fibropred_model.py

Browse files
Files changed (1) hide show
  1. scripts/fibropred_model.py +46 -14
scripts/fibropred_model.py CHANGED
@@ -9,12 +9,18 @@ from sklearn.metrics import classification_report, accuracy_score, roc_curve, au
9
  from sklearn.feature_selection import SelectFromModel
10
  import matplotlib.pyplot as plt
11
  import seaborn as sns
 
 
 
 
 
12
 
13
  # Load dataset
14
  def load_data(file_path):
15
  df = pd.read_excel(file_path, header=1)
16
  return df
17
 
 
18
  # Preprocess data including categorical variables
19
  def preprocess_data_with_categoricals(df):
20
  # Replace -9 with NaN for missing values
@@ -24,10 +30,6 @@ def preprocess_data_with_categoricals(df):
24
  missing_percentage = df.isnull().sum() / len(df) * 100
25
  df = df.drop(columns=missing_percentage[missing_percentage > 50].index)
26
 
27
- # Drop specific columns
28
- drop_columns = ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER']
29
- df = df.drop(columns=[col for col in drop_columns if col in df.columns])
30
-
31
  # Impute missing values
32
  imputer = SimpleImputer(strategy='median')
33
  numeric_cols = df.select_dtypes(include=['number']).columns
@@ -59,15 +61,22 @@ def apply_one_hot_encoding(df):
59
  categorical_cols = df.select_dtypes(include=['object']).columns
60
  df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
61
  return df
 
 
 
 
 
 
62
 
63
  # Select predictors using feature importance
64
  def select_important_features(X, y, threshold=0.03):
65
  model = RandomForestClassifier(random_state=42)
66
  model.fit(X, y)
67
  selector = SelectFromModel(model, threshold=threshold, prefit=True)
68
- X_reduced = selector.transform(X)
69
- selected_features = X.columns[selector.get_support()]
70
- return pd.DataFrame(X_reduced, columns=selected_features), selected_features
 
71
 
72
  # Visualize feature importance
73
  def plot_feature_importance(model, features, target):
@@ -122,33 +131,56 @@ def plot_roc_auc(model, X_test, y_test, target):
122
 
123
  # Save trained model
124
  def save_model(model, target, selected_features):
125
-
126
  if not os.path.exists("models"):
127
  os.makedirs("models")
128
  file_name = f"models/{target}_random_forest_model.pkl"
129
  joblib.dump({'model': model, 'features': selected_features}, file_name)
130
  print(f"Model and features saved to {file_name}")
131
 
132
-
133
  # Main pipeline
134
  def main():
135
  file_path = 'FibroPredCODIFICADA.xlsx'
136
  df = load_data(file_path)
137
 
138
- # Target columns
139
- target_columns = ['Death', 'Progressive disease', 'Necessity of transplantation']
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  # Preprocess data
142
  df, numeric_cols, categorical_cols = preprocess_data_with_categoricals(df)
143
 
144
  for target in target_columns:
145
  print(f"Processing target: {target}")
146
- X = df[numeric_cols].drop(columns=target_columns, errors='ignore') # Ensure target variables are excluded
 
 
 
 
 
 
 
 
147
  y = df[target]
148
 
149
  # Split data
150
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
151
 
 
 
 
 
 
152
  # Select important features
153
  X_train_selected, selected_features = select_important_features(X_train, y_train)
154
  X_test_selected = X_test[selected_features]
@@ -166,9 +198,9 @@ def main():
166
  model.fit(X_train_selected, y_train)
167
 
168
  # Cross-validation to check overfitting
169
- cv = StratifiedKFold(n_splits=15, shuffle=True, random_state=42)
170
  cv_scores = cross_val_score(model, X_train_selected, y_train, cv=cv, scoring='accuracy')
171
- train_scores = cross_val_score(model, X_train_selected, y_train, cv=15, scoring='accuracy')
172
  y_pred_test = model.predict(X_test_selected)
173
  test_score = accuracy_score(y_test, y_pred_test)
174
 
 
9
  from sklearn.feature_selection import SelectFromModel
10
  import matplotlib.pyplot as plt
11
  import seaborn as sns
12
+ from scipy.stats import zscore
13
+ from imblearn.over_sampling import SMOTE
14
+ import os
15
+ os.environ["LOKY_MAX_CPU_COUNT"] = "4" # Cambia "4" por el número de núcleos deseado
16
+
17
 
18
  # Load dataset
19
  def load_data(file_path):
20
  df = pd.read_excel(file_path, header=1)
21
  return df
22
 
23
+
24
  # Preprocess data including categorical variables
25
  def preprocess_data_with_categoricals(df):
26
  # Replace -9 with NaN for missing values
 
30
  missing_percentage = df.isnull().sum() / len(df) * 100
31
  df = df.drop(columns=missing_percentage[missing_percentage > 50].index)
32
 
 
 
 
 
33
  # Impute missing values
34
  imputer = SimpleImputer(strategy='median')
35
  numeric_cols = df.select_dtypes(include=['number']).columns
 
61
  categorical_cols = df.select_dtypes(include=['object']).columns
62
  df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
63
  return df
64
+ # Remove outliers based on Z-score
65
+ def remove_outliers(df, numeric_cols, z_threshold=4):
66
+ for col in numeric_cols:
67
+ z_scores = zscore(df[col])
68
+ df = df[(np.abs(z_scores) < z_threshold) | (pd.isnull(z_scores))]
69
+ return df
70
 
71
  # Select predictors using feature importance
72
  def select_important_features(X, y, threshold=0.03):
73
  model = RandomForestClassifier(random_state=42)
74
  model.fit(X, y)
75
  selector = SelectFromModel(model, threshold=threshold, prefit=True)
76
+ selected_mask = selector.get_support()
77
+ selected_features = X.columns[selected_mask]
78
+ X_reduced = X.loc[:, selected_features]
79
+ return X_reduced, selected_features
80
 
81
  # Visualize feature importance
82
  def plot_feature_importance(model, features, target):
 
131
 
132
  # Save trained model
133
  def save_model(model, target, selected_features):
 
134
  if not os.path.exists("models"):
135
  os.makedirs("models")
136
  file_name = f"models/{target}_random_forest_model.pkl"
137
  joblib.dump({'model': model, 'features': selected_features}, file_name)
138
  print(f"Model and features saved to {file_name}")
139
 
 
140
  # Main pipeline
141
  def main():
142
  file_path = 'FibroPredCODIFICADA.xlsx'
143
  df = load_data(file_path)
144
 
145
+ # Include 'ProgressiveDisease' in target columns
146
+ target_columns = ['Death', 'Binary diagnosis', 'Necessity of transplantation', 'Progressive disease']
147
+
148
+ # Define predictors to remove for each target
149
+ predictors_to_remove_dict = {
150
+ 'Death': ['Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','FVC (L) 1 year after diagnosis',
151
+ 'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis'],
152
+ 'Binary diagnosis': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Pirfenidone','Nintedanib',
153
+ 'Antifibrotic Drug','Prednisone','Mycophenolate','FVC (L) 1 year after diagnosis','FVC (%) 1 year after diagnosis',
154
+ 'DLCO (%) 1 year after diagnosis','RadioWorsening2y'],
155
+ 'Necessity of transplantation': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER','Age at diagnosis'],
156
+ 'Progressive disease': ['ProgressiveDisease', 'Final diagnosis', 'Transplantation date', 'Cause of death', 'Date of death', 'COD NUMBER', 'FVC (L) 1 year after diagnosis',
157
+ 'FVC (%) 1 year after diagnosis','DLCO (%) 1 year after diagnosis','RadioWorsening2y']
158
+ }
159
 
160
  # Preprocess data
161
  df, numeric_cols, categorical_cols = preprocess_data_with_categoricals(df)
162
 
163
  for target in target_columns:
164
  print(f"Processing target: {target}")
165
+ # Apply outlier removal only for specific targets
166
+ if target in ['Necessity of transplantation', 'Progressive disease']:
167
+ print(f"Removing outliers for target: {target}")
168
+ df = remove_outliers(df, numeric_cols)
169
+
170
+ # Get predictors to remove for the current target
171
+ predictors_to_remove = predictors_to_remove_dict.get(target, [])
172
+
173
+ X = df[numeric_cols].drop(columns=target_columns + predictors_to_remove, errors='ignore')
174
  y = df[target]
175
 
176
  # Split data
177
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
178
 
179
+ # Apply SMOTE only for specific targets
180
+ if target in ['Binary diagnosis', 'Necessity of transplantation']:
181
+ print(f"Applying SMOTE to balance the training set for target: {target}")
182
+ smote = SMOTE(random_state=42)
183
+ X_train, y_train = smote.fit_resample(X_train, y_train)
184
  # Select important features
185
  X_train_selected, selected_features = select_important_features(X_train, y_train)
186
  X_test_selected = X_test[selected_features]
 
198
  model.fit(X_train_selected, y_train)
199
 
200
  # Cross-validation to check overfitting
201
+ cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
202
  cv_scores = cross_val_score(model, X_train_selected, y_train, cv=cv, scoring='accuracy')
203
+ train_scores = cross_val_score(model, X_train_selected, y_train, cv=10, scoring='accuracy')
204
  y_pred_test = model.predict(X_test_selected)
205
  test_score = accuracy_score(y_test, y_pred_test)
206