anas commited on
Commit
0e6facf
·
1 Parent(s): 222c6da

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -0
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ar
3
+ datasets:
4
+ - common_voice
5
+ - common_voice: Common Voice Corpus 4
6
+ metrics:
7
+ - wer
8
+ tags:
9
+ - audio
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - xlsr-fine-tuning-week
13
+ license: apache-2.0
14
+ model-index:
15
+ - name: `Hasni XLSR Wav2Vec2 Large 53`
16
+ results:
17
+ - task:
18
+ name: Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice ar
22
+ type: common_voice
23
+ args: ar
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: {wer_result_on_test}
28
+ ---
29
+
30
+ # Wav2Vec2-Large-XLSR-53-Arabic
31
+
32
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice Corpus 4](https://commonvoice.mozilla.org/en/datasets) dataset.
33
+ When using this model, make sure that your speech input is sampled at 16kHz.
34
+
35
+ ## Usage
36
+
37
+ The model can be used directly (without a language model) as follows:
38
+
39
+ ```python
40
+ import torch
41
+ import torchaudio
42
+ from datasets import load_dataset
43
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
+
45
+ test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
46
+
47
+ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
48
+ model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
49
+
50
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
+
52
+ # Preprocessing the datasets.
53
+ # We need to read the aduio files as arrays
54
+ def speech_file_to_array_fn(batch):
55
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ return batch
58
+
59
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
60
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
+
62
+ with torch.no_grad():
63
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
+
65
+ predicted_ids = torch.argmax(logits, dim=-1)
66
+
67
+ print("Prediction:", processor.batch_decode(predicted_ids))
68
+ print("Reference:", test_dataset["sentence"][:2])
69
+ ```
70
+
71
+
72
+ ## Evaluation
73
+
74
+ The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
75
+
76
+
77
+ ```python
78
+ import torch
79
+ import torchaudio
80
+ from datasets import load_dataset, load_metric
81
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
82
+ import re
83
+
84
+ test_dataset = load_dataset("common_voice", "ar", split="test")
85
+
86
+ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
87
+ model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
+ model.to("cuda")
89
+
90
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
91
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
+
93
+ # Preprocessing the datasets.
94
+ # We need to read the aduio files as arrays
95
+ def speech_file_to_array_fn(batch):
96
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ return batch
100
+
101
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
102
+
103
+ # Preprocessing the datasets.
104
+ # We need to read the aduio files as arrays
105
+ def evaluate(batch):
106
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
+
108
+ with torch.no_grad():
109
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
+
111
+ pred_ids = torch.argmax(logits, dim=-1)
112
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ return batch
114
+
115
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
+
117
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
+ ```
119
+
120
+ **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
121
+
122
+
123
+ ## Training
124
+
125
+ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.
126
+
127
+ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.