anas commited on
Commit
f3585a1
·
1 Parent(s): 31dc539

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: {wer_result_on_test}
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Arabic
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
- \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
- \\\\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -87,38 +87,38 @@ processor = Wav2Vec2Processor.from_pretrained("anas/wav2vec2-large-xlsr-arabic")
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]'
91
 
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
- \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
- \\\\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- \\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- \\\\twith torch.no_grad():
110
- \\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- \\\\tpred_ids = torch.argmax(logits, dim=-1)
113
- \\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
- \\\\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
- **Test Result**: XX.XX %
122
 
123
 
124
  ## Training
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 59.67
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Arabic
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \\\\\\\\treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
87
  model = Wav2Vec2ForCTC.from_pretrained("anas/wav2vec2-large-xlsr-arabic/")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]'
91
 
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ \\\\\\\\treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ \\\\\\\\twith torch.no_grad():
110
+ \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ \\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
113
+ \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ \\\\\\\\treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
+ **Test Result**: 59.67 %
122
 
123
 
124
  ## Training