anderloh commited on
Commit
7855927
·
verified ·
1 Parent(s): c75033a

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +387 -0
  2. config.json +124 -0
  3. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test
3
+ tags:
4
+ - audio-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: HuggingfaceTest
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # HuggingfaceTest
17
+
18
+ This model is a fine-tuned version of [anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test](https://huggingface.co/anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test) on the anderloh/Master5Class dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8156
21
+ - Accuracy: 0.7028
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 128
42
+ - eval_batch_size: 128
43
+ - seed: 0
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 512
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 350.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | No log | 0.92 | 3 | 1.5989 | 0.3427 |
57
+ | No log | 1.85 | 6 | 1.5988 | 0.3427 |
58
+ | No log | 2.77 | 9 | 1.5986 | 0.3427 |
59
+ | No log | 4.0 | 13 | 1.5981 | 0.3427 |
60
+ | No log | 4.92 | 16 | 1.5976 | 0.3357 |
61
+ | No log | 5.85 | 19 | 1.5970 | 0.3427 |
62
+ | No log | 6.77 | 22 | 1.5963 | 0.3392 |
63
+ | No log | 8.0 | 26 | 1.5953 | 0.3357 |
64
+ | No log | 8.92 | 29 | 1.5943 | 0.3287 |
65
+ | No log | 9.85 | 32 | 1.5933 | 0.3287 |
66
+ | No log | 10.77 | 35 | 1.5922 | 0.3217 |
67
+ | No log | 12.0 | 39 | 1.5906 | 0.3182 |
68
+ | No log | 12.92 | 42 | 1.5892 | 0.3147 |
69
+ | No log | 13.85 | 45 | 1.5877 | 0.3007 |
70
+ | No log | 14.77 | 48 | 1.5862 | 0.2937 |
71
+ | 1.5907 | 16.0 | 52 | 1.5841 | 0.2972 |
72
+ | 1.5907 | 16.92 | 55 | 1.5824 | 0.2832 |
73
+ | 1.5907 | 17.85 | 58 | 1.5806 | 0.2797 |
74
+ | 1.5907 | 18.77 | 61 | 1.5788 | 0.2692 |
75
+ | 1.5907 | 20.0 | 65 | 1.5762 | 0.2692 |
76
+ | 1.5907 | 20.92 | 68 | 1.5740 | 0.2657 |
77
+ | 1.5907 | 21.85 | 71 | 1.5717 | 0.2552 |
78
+ | 1.5907 | 22.77 | 74 | 1.5694 | 0.2517 |
79
+ | 1.5907 | 24.0 | 78 | 1.5661 | 0.2378 |
80
+ | 1.5907 | 24.92 | 81 | 1.5635 | 0.2343 |
81
+ | 1.5907 | 25.85 | 84 | 1.5608 | 0.2238 |
82
+ | 1.5907 | 26.77 | 87 | 1.5581 | 0.2238 |
83
+ | 1.5907 | 28.0 | 91 | 1.5542 | 0.2273 |
84
+ | 1.5907 | 28.92 | 94 | 1.5511 | 0.2273 |
85
+ | 1.5907 | 29.85 | 97 | 1.5479 | 0.2273 |
86
+ | 1.5431 | 30.77 | 100 | 1.5448 | 0.2273 |
87
+ | 1.5431 | 32.0 | 104 | 1.5408 | 0.2273 |
88
+ | 1.5431 | 32.92 | 107 | 1.5380 | 0.2273 |
89
+ | 1.5431 | 33.85 | 110 | 1.5359 | 0.2273 |
90
+ | 1.5431 | 34.77 | 113 | 1.5345 | 0.2273 |
91
+ | 1.5431 | 36.0 | 117 | 1.5335 | 0.2273 |
92
+ | 1.5431 | 36.92 | 120 | 1.5341 | 0.2273 |
93
+ | 1.5431 | 37.85 | 123 | 1.5361 | 0.2273 |
94
+ | 1.5431 | 38.77 | 126 | 1.5397 | 0.2273 |
95
+ | 1.5431 | 40.0 | 130 | 1.5479 | 0.2273 |
96
+ | 1.5431 | 40.92 | 133 | 1.5564 | 0.2273 |
97
+ | 1.5431 | 41.85 | 136 | 1.5679 | 0.2273 |
98
+ | 1.5431 | 42.77 | 139 | 1.5822 | 0.2273 |
99
+ | 1.5431 | 44.0 | 143 | 1.6002 | 0.2273 |
100
+ | 1.5431 | 44.92 | 146 | 1.6109 | 0.2273 |
101
+ | 1.5431 | 45.85 | 149 | 1.6146 | 0.2273 |
102
+ | 1.4033 | 46.77 | 152 | 1.6131 | 0.2273 |
103
+ | 1.4033 | 48.0 | 156 | 1.6008 | 0.2273 |
104
+ | 1.4033 | 48.92 | 159 | 1.5862 | 0.2413 |
105
+ | 1.4033 | 49.85 | 162 | 1.5726 | 0.2692 |
106
+ | 1.4033 | 50.77 | 165 | 1.5599 | 0.2692 |
107
+ | 1.4033 | 52.0 | 169 | 1.5459 | 0.2867 |
108
+ | 1.4033 | 52.92 | 172 | 1.5383 | 0.2937 |
109
+ | 1.4033 | 53.85 | 175 | 1.5311 | 0.3147 |
110
+ | 1.4033 | 54.77 | 178 | 1.5242 | 0.3252 |
111
+ | 1.4033 | 56.0 | 182 | 1.5169 | 0.3357 |
112
+ | 1.4033 | 56.92 | 185 | 1.5103 | 0.3427 |
113
+ | 1.4033 | 57.85 | 188 | 1.5056 | 0.3462 |
114
+ | 1.4033 | 58.77 | 191 | 1.4995 | 0.3462 |
115
+ | 1.4033 | 60.0 | 195 | 1.4939 | 0.3497 |
116
+ | 1.4033 | 60.92 | 198 | 1.4870 | 0.3601 |
117
+ | 1.2485 | 61.85 | 201 | 1.4829 | 0.3671 |
118
+ | 1.2485 | 62.77 | 204 | 1.4735 | 0.3741 |
119
+ | 1.2485 | 64.0 | 208 | 1.4612 | 0.3811 |
120
+ | 1.2485 | 64.92 | 211 | 1.4492 | 0.3986 |
121
+ | 1.2485 | 65.85 | 214 | 1.4365 | 0.4126 |
122
+ | 1.2485 | 66.77 | 217 | 1.4227 | 0.4231 |
123
+ | 1.2485 | 68.0 | 221 | 1.4096 | 0.4336 |
124
+ | 1.2485 | 68.92 | 224 | 1.4010 | 0.4371 |
125
+ | 1.2485 | 69.85 | 227 | 1.3950 | 0.4406 |
126
+ | 1.2485 | 70.77 | 230 | 1.3920 | 0.4371 |
127
+ | 1.2485 | 72.0 | 234 | 1.3799 | 0.4406 |
128
+ | 1.2485 | 72.92 | 237 | 1.3669 | 0.4476 |
129
+ | 1.2485 | 73.85 | 240 | 1.3515 | 0.4545 |
130
+ | 1.2485 | 74.77 | 243 | 1.3401 | 0.4720 |
131
+ | 1.2485 | 76.0 | 247 | 1.3286 | 0.4825 |
132
+ | 1.1198 | 76.92 | 250 | 1.3175 | 0.4860 |
133
+ | 1.1198 | 77.85 | 253 | 1.3067 | 0.4895 |
134
+ | 1.1198 | 78.77 | 256 | 1.3013 | 0.4825 |
135
+ | 1.1198 | 80.0 | 260 | 1.2954 | 0.4790 |
136
+ | 1.1198 | 80.92 | 263 | 1.2897 | 0.4860 |
137
+ | 1.1198 | 81.85 | 266 | 1.2832 | 0.4860 |
138
+ | 1.1198 | 82.77 | 269 | 1.2712 | 0.4825 |
139
+ | 1.1198 | 84.0 | 273 | 1.2584 | 0.4930 |
140
+ | 1.1198 | 84.92 | 276 | 1.2516 | 0.4965 |
141
+ | 1.1198 | 85.85 | 279 | 1.2456 | 0.5 |
142
+ | 1.1198 | 86.77 | 282 | 1.2444 | 0.5105 |
143
+ | 1.1198 | 88.0 | 286 | 1.2373 | 0.5105 |
144
+ | 1.1198 | 88.92 | 289 | 1.2309 | 0.5140 |
145
+ | 1.1198 | 89.85 | 292 | 1.2219 | 0.5210 |
146
+ | 1.1198 | 90.77 | 295 | 1.2145 | 0.5210 |
147
+ | 1.1198 | 92.0 | 299 | 1.2054 | 0.5280 |
148
+ | 0.9915 | 92.92 | 302 | 1.1982 | 0.5350 |
149
+ | 0.9915 | 93.85 | 305 | 1.1913 | 0.5385 |
150
+ | 0.9915 | 94.77 | 308 | 1.1859 | 0.5455 |
151
+ | 0.9915 | 96.0 | 312 | 1.1794 | 0.5490 |
152
+ | 0.9915 | 96.92 | 315 | 1.1734 | 0.5455 |
153
+ | 0.9915 | 97.85 | 318 | 1.1638 | 0.5524 |
154
+ | 0.9915 | 98.77 | 321 | 1.1550 | 0.5524 |
155
+ | 0.9915 | 100.0 | 325 | 1.1465 | 0.5490 |
156
+ | 0.9915 | 100.92 | 328 | 1.1444 | 0.5594 |
157
+ | 0.9915 | 101.85 | 331 | 1.1359 | 0.5629 |
158
+ | 0.9915 | 102.77 | 334 | 1.1271 | 0.5664 |
159
+ | 0.9915 | 104.0 | 338 | 1.1090 | 0.5769 |
160
+ | 0.9915 | 104.92 | 341 | 1.0972 | 0.5944 |
161
+ | 0.9915 | 105.85 | 344 | 1.0901 | 0.6014 |
162
+ | 0.9915 | 106.77 | 347 | 1.0809 | 0.6084 |
163
+ | 0.8834 | 108.0 | 351 | 1.0683 | 0.6119 |
164
+ | 0.8834 | 108.92 | 354 | 1.0605 | 0.6224 |
165
+ | 0.8834 | 109.85 | 357 | 1.0563 | 0.6259 |
166
+ | 0.8834 | 110.77 | 360 | 1.0538 | 0.6224 |
167
+ | 0.8834 | 112.0 | 364 | 1.0491 | 0.6154 |
168
+ | 0.8834 | 112.92 | 367 | 1.0441 | 0.6119 |
169
+ | 0.8834 | 113.85 | 370 | 1.0358 | 0.6119 |
170
+ | 0.8834 | 114.77 | 373 | 1.0194 | 0.6224 |
171
+ | 0.8834 | 116.0 | 377 | 1.0034 | 0.6294 |
172
+ | 0.8834 | 116.92 | 380 | 0.9991 | 0.6259 |
173
+ | 0.8834 | 117.85 | 383 | 0.9960 | 0.6259 |
174
+ | 0.8834 | 118.77 | 386 | 0.9911 | 0.6294 |
175
+ | 0.8834 | 120.0 | 390 | 0.9834 | 0.6434 |
176
+ | 0.8834 | 120.92 | 393 | 0.9776 | 0.6434 |
177
+ | 0.8834 | 121.85 | 396 | 0.9773 | 0.6434 |
178
+ | 0.8834 | 122.77 | 399 | 0.9735 | 0.6434 |
179
+ | 0.7786 | 124.0 | 403 | 0.9731 | 0.6399 |
180
+ | 0.7786 | 124.92 | 406 | 0.9728 | 0.6434 |
181
+ | 0.7786 | 125.85 | 409 | 0.9657 | 0.6573 |
182
+ | 0.7786 | 126.77 | 412 | 0.9548 | 0.6573 |
183
+ | 0.7786 | 128.0 | 416 | 0.9424 | 0.6643 |
184
+ | 0.7786 | 128.92 | 419 | 0.9391 | 0.6678 |
185
+ | 0.7786 | 129.85 | 422 | 0.9418 | 0.6678 |
186
+ | 0.7786 | 130.77 | 425 | 0.9476 | 0.6608 |
187
+ | 0.7786 | 132.0 | 429 | 0.9457 | 0.6643 |
188
+ | 0.7786 | 132.92 | 432 | 0.9413 | 0.6643 |
189
+ | 0.7786 | 133.85 | 435 | 0.9334 | 0.6678 |
190
+ | 0.7786 | 134.77 | 438 | 0.9329 | 0.6678 |
191
+ | 0.7786 | 136.0 | 442 | 0.9334 | 0.6713 |
192
+ | 0.7786 | 136.92 | 445 | 0.9265 | 0.6713 |
193
+ | 0.7786 | 137.85 | 448 | 0.9187 | 0.6713 |
194
+ | 0.7133 | 138.77 | 451 | 0.9169 | 0.6678 |
195
+ | 0.7133 | 140.0 | 455 | 0.9142 | 0.6713 |
196
+ | 0.7133 | 140.92 | 458 | 0.9131 | 0.6713 |
197
+ | 0.7133 | 141.85 | 461 | 0.9161 | 0.6783 |
198
+ | 0.7133 | 142.77 | 464 | 0.9224 | 0.6678 |
199
+ | 0.7133 | 144.0 | 468 | 0.9139 | 0.6748 |
200
+ | 0.7133 | 144.92 | 471 | 0.9090 | 0.6748 |
201
+ | 0.7133 | 145.85 | 474 | 0.9073 | 0.6713 |
202
+ | 0.7133 | 146.77 | 477 | 0.9110 | 0.6608 |
203
+ | 0.7133 | 148.0 | 481 | 0.9167 | 0.6573 |
204
+ | 0.7133 | 148.92 | 484 | 0.9118 | 0.6643 |
205
+ | 0.7133 | 149.85 | 487 | 0.8996 | 0.6713 |
206
+ | 0.7133 | 150.77 | 490 | 0.8904 | 0.6748 |
207
+ | 0.7133 | 152.0 | 494 | 0.8889 | 0.6748 |
208
+ | 0.7133 | 152.92 | 497 | 0.8899 | 0.6713 |
209
+ | 0.6674 | 153.85 | 500 | 0.8874 | 0.6748 |
210
+ | 0.6674 | 154.77 | 503 | 0.8874 | 0.6748 |
211
+ | 0.6674 | 156.0 | 507 | 0.8905 | 0.6748 |
212
+ | 0.6674 | 156.92 | 510 | 0.8881 | 0.6783 |
213
+ | 0.6674 | 157.85 | 513 | 0.8829 | 0.6748 |
214
+ | 0.6674 | 158.77 | 516 | 0.8809 | 0.6783 |
215
+ | 0.6674 | 160.0 | 520 | 0.8781 | 0.6783 |
216
+ | 0.6674 | 160.92 | 523 | 0.8776 | 0.6818 |
217
+ | 0.6674 | 161.85 | 526 | 0.8796 | 0.6783 |
218
+ | 0.6674 | 162.77 | 529 | 0.8795 | 0.6818 |
219
+ | 0.6674 | 164.0 | 533 | 0.8797 | 0.6783 |
220
+ | 0.6674 | 164.92 | 536 | 0.8707 | 0.6783 |
221
+ | 0.6674 | 165.85 | 539 | 0.8697 | 0.6783 |
222
+ | 0.6674 | 166.77 | 542 | 0.8724 | 0.6783 |
223
+ | 0.6674 | 168.0 | 546 | 0.8704 | 0.6748 |
224
+ | 0.6674 | 168.92 | 549 | 0.8694 | 0.6748 |
225
+ | 0.6305 | 169.85 | 552 | 0.8740 | 0.6748 |
226
+ | 0.6305 | 170.77 | 555 | 0.8713 | 0.6748 |
227
+ | 0.6305 | 172.0 | 559 | 0.8682 | 0.6783 |
228
+ | 0.6305 | 172.92 | 562 | 0.8688 | 0.6783 |
229
+ | 0.6305 | 173.85 | 565 | 0.8693 | 0.6818 |
230
+ | 0.6305 | 174.77 | 568 | 0.8744 | 0.6783 |
231
+ | 0.6305 | 176.0 | 572 | 0.8760 | 0.6783 |
232
+ | 0.6305 | 176.92 | 575 | 0.8696 | 0.6853 |
233
+ | 0.6305 | 177.85 | 578 | 0.8669 | 0.6853 |
234
+ | 0.6305 | 178.77 | 581 | 0.8641 | 0.6853 |
235
+ | 0.6305 | 180.0 | 585 | 0.8697 | 0.6713 |
236
+ | 0.6305 | 180.92 | 588 | 0.8678 | 0.6748 |
237
+ | 0.6305 | 181.85 | 591 | 0.8621 | 0.6818 |
238
+ | 0.6305 | 182.77 | 594 | 0.8557 | 0.6888 |
239
+ | 0.6305 | 184.0 | 598 | 0.8481 | 0.6888 |
240
+ | 0.6095 | 184.92 | 601 | 0.8429 | 0.6888 |
241
+ | 0.6095 | 185.85 | 604 | 0.8413 | 0.6888 |
242
+ | 0.6095 | 186.77 | 607 | 0.8402 | 0.6923 |
243
+ | 0.6095 | 188.0 | 611 | 0.8415 | 0.6888 |
244
+ | 0.6095 | 188.92 | 614 | 0.8410 | 0.6923 |
245
+ | 0.6095 | 189.85 | 617 | 0.8389 | 0.6853 |
246
+ | 0.6095 | 190.77 | 620 | 0.8354 | 0.6853 |
247
+ | 0.6095 | 192.0 | 624 | 0.8357 | 0.6888 |
248
+ | 0.6095 | 192.92 | 627 | 0.8401 | 0.6958 |
249
+ | 0.6095 | 193.85 | 630 | 0.8449 | 0.6958 |
250
+ | 0.6095 | 194.77 | 633 | 0.8479 | 0.6958 |
251
+ | 0.6095 | 196.0 | 637 | 0.8455 | 0.6923 |
252
+ | 0.6095 | 196.92 | 640 | 0.8422 | 0.6923 |
253
+ | 0.6095 | 197.85 | 643 | 0.8425 | 0.6923 |
254
+ | 0.6095 | 198.77 | 646 | 0.8437 | 0.6923 |
255
+ | 0.5908 | 200.0 | 650 | 0.8367 | 0.6958 |
256
+ | 0.5908 | 200.92 | 653 | 0.8347 | 0.6993 |
257
+ | 0.5908 | 201.85 | 656 | 0.8287 | 0.6958 |
258
+ | 0.5908 | 202.77 | 659 | 0.8260 | 0.6923 |
259
+ | 0.5908 | 204.0 | 663 | 0.8264 | 0.6958 |
260
+ | 0.5908 | 204.92 | 666 | 0.8295 | 0.6958 |
261
+ | 0.5908 | 205.85 | 669 | 0.8302 | 0.6923 |
262
+ | 0.5908 | 206.77 | 672 | 0.8285 | 0.6923 |
263
+ | 0.5908 | 208.0 | 676 | 0.8311 | 0.6923 |
264
+ | 0.5908 | 208.92 | 679 | 0.8321 | 0.6923 |
265
+ | 0.5908 | 209.85 | 682 | 0.8306 | 0.6923 |
266
+ | 0.5908 | 210.77 | 685 | 0.8303 | 0.6923 |
267
+ | 0.5908 | 212.0 | 689 | 0.8256 | 0.6993 |
268
+ | 0.5908 | 212.92 | 692 | 0.8230 | 0.6958 |
269
+ | 0.5908 | 213.85 | 695 | 0.8194 | 0.6958 |
270
+ | 0.5908 | 214.77 | 698 | 0.8183 | 0.6958 |
271
+ | 0.5763 | 216.0 | 702 | 0.8232 | 0.6958 |
272
+ | 0.5763 | 216.92 | 705 | 0.8237 | 0.6888 |
273
+ | 0.5763 | 217.85 | 708 | 0.8196 | 0.6993 |
274
+ | 0.5763 | 218.77 | 711 | 0.8142 | 0.6993 |
275
+ | 0.5763 | 220.0 | 715 | 0.8115 | 0.6993 |
276
+ | 0.5763 | 220.92 | 718 | 0.8130 | 0.6993 |
277
+ | 0.5763 | 221.85 | 721 | 0.8156 | 0.7028 |
278
+ | 0.5763 | 222.77 | 724 | 0.8201 | 0.6958 |
279
+ | 0.5763 | 224.0 | 728 | 0.8227 | 0.6958 |
280
+ | 0.5763 | 224.92 | 731 | 0.8232 | 0.6958 |
281
+ | 0.5763 | 225.85 | 734 | 0.8198 | 0.6923 |
282
+ | 0.5763 | 226.77 | 737 | 0.8151 | 0.6923 |
283
+ | 0.5763 | 228.0 | 741 | 0.8136 | 0.6923 |
284
+ | 0.5763 | 228.92 | 744 | 0.8134 | 0.6923 |
285
+ | 0.5763 | 229.85 | 747 | 0.8123 | 0.6958 |
286
+ | 0.57 | 230.77 | 750 | 0.8095 | 0.6958 |
287
+ | 0.57 | 232.0 | 754 | 0.8082 | 0.6958 |
288
+ | 0.57 | 232.92 | 757 | 0.8084 | 0.6958 |
289
+ | 0.57 | 233.85 | 760 | 0.8114 | 0.6923 |
290
+ | 0.57 | 234.77 | 763 | 0.8130 | 0.6923 |
291
+ | 0.57 | 236.0 | 767 | 0.8154 | 0.6923 |
292
+ | 0.57 | 236.92 | 770 | 0.8160 | 0.6923 |
293
+ | 0.57 | 237.85 | 773 | 0.8126 | 0.6888 |
294
+ | 0.57 | 238.77 | 776 | 0.8114 | 0.6888 |
295
+ | 0.57 | 240.0 | 780 | 0.8041 | 0.6923 |
296
+ | 0.57 | 240.92 | 783 | 0.8006 | 0.6923 |
297
+ | 0.57 | 241.85 | 786 | 0.7987 | 0.6958 |
298
+ | 0.57 | 242.77 | 789 | 0.7977 | 0.6993 |
299
+ | 0.57 | 244.0 | 793 | 0.8001 | 0.6993 |
300
+ | 0.57 | 244.92 | 796 | 0.8044 | 0.6958 |
301
+ | 0.57 | 245.85 | 799 | 0.8082 | 0.6958 |
302
+ | 0.5456 | 246.77 | 802 | 0.8121 | 0.6888 |
303
+ | 0.5456 | 248.0 | 806 | 0.8107 | 0.6888 |
304
+ | 0.5456 | 248.92 | 809 | 0.8064 | 0.6958 |
305
+ | 0.5456 | 249.85 | 812 | 0.8042 | 0.6958 |
306
+ | 0.5456 | 250.77 | 815 | 0.8006 | 0.6958 |
307
+ | 0.5456 | 252.0 | 819 | 0.7969 | 0.6958 |
308
+ | 0.5456 | 252.92 | 822 | 0.7955 | 0.6993 |
309
+ | 0.5456 | 253.85 | 825 | 0.7973 | 0.6958 |
310
+ | 0.5456 | 254.77 | 828 | 0.8001 | 0.6958 |
311
+ | 0.5456 | 256.0 | 832 | 0.8035 | 0.6888 |
312
+ | 0.5456 | 256.92 | 835 | 0.8035 | 0.6853 |
313
+ | 0.5456 | 257.85 | 838 | 0.8012 | 0.6923 |
314
+ | 0.5456 | 258.77 | 841 | 0.8000 | 0.6923 |
315
+ | 0.5456 | 260.0 | 845 | 0.7963 | 0.6888 |
316
+ | 0.5456 | 260.92 | 848 | 0.7928 | 0.6958 |
317
+ | 0.5369 | 261.85 | 851 | 0.7919 | 0.6923 |
318
+ | 0.5369 | 262.77 | 854 | 0.7913 | 0.6888 |
319
+ | 0.5369 | 264.0 | 858 | 0.7929 | 0.6888 |
320
+ | 0.5369 | 264.92 | 861 | 0.7955 | 0.6818 |
321
+ | 0.5369 | 265.85 | 864 | 0.7963 | 0.6853 |
322
+ | 0.5369 | 266.77 | 867 | 0.7952 | 0.6888 |
323
+ | 0.5369 | 268.0 | 871 | 0.7936 | 0.6888 |
324
+ | 0.5369 | 268.92 | 874 | 0.7929 | 0.6853 |
325
+ | 0.5369 | 269.85 | 877 | 0.7933 | 0.6853 |
326
+ | 0.5369 | 270.77 | 880 | 0.7941 | 0.6853 |
327
+ | 0.5369 | 272.0 | 884 | 0.7940 | 0.6853 |
328
+ | 0.5369 | 272.92 | 887 | 0.7929 | 0.6853 |
329
+ | 0.5369 | 273.85 | 890 | 0.7930 | 0.6853 |
330
+ | 0.5369 | 274.77 | 893 | 0.7943 | 0.6853 |
331
+ | 0.5369 | 276.0 | 897 | 0.7944 | 0.6853 |
332
+ | 0.5388 | 276.92 | 900 | 0.7933 | 0.6853 |
333
+ | 0.5388 | 277.85 | 903 | 0.7914 | 0.6853 |
334
+ | 0.5388 | 278.77 | 906 | 0.7904 | 0.6853 |
335
+ | 0.5388 | 280.0 | 910 | 0.7888 | 0.6853 |
336
+ | 0.5388 | 280.92 | 913 | 0.7900 | 0.6853 |
337
+ | 0.5388 | 281.85 | 916 | 0.7906 | 0.6853 |
338
+ | 0.5388 | 282.77 | 919 | 0.7911 | 0.6853 |
339
+ | 0.5388 | 284.0 | 923 | 0.7907 | 0.6853 |
340
+ | 0.5388 | 284.92 | 926 | 0.7907 | 0.6853 |
341
+ | 0.5388 | 285.85 | 929 | 0.7905 | 0.6818 |
342
+ | 0.5388 | 286.77 | 932 | 0.7900 | 0.6818 |
343
+ | 0.5388 | 288.0 | 936 | 0.7901 | 0.6853 |
344
+ | 0.5388 | 288.92 | 939 | 0.7902 | 0.6853 |
345
+ | 0.5388 | 289.85 | 942 | 0.7910 | 0.6853 |
346
+ | 0.5388 | 290.77 | 945 | 0.7914 | 0.6888 |
347
+ | 0.5388 | 292.0 | 949 | 0.7920 | 0.6888 |
348
+ | 0.5261 | 292.92 | 952 | 0.7928 | 0.6853 |
349
+ | 0.5261 | 293.85 | 955 | 0.7932 | 0.6888 |
350
+ | 0.5261 | 294.77 | 958 | 0.7925 | 0.6888 |
351
+ | 0.5261 | 296.0 | 962 | 0.7922 | 0.6888 |
352
+ | 0.5261 | 296.92 | 965 | 0.7919 | 0.6888 |
353
+ | 0.5261 | 297.85 | 968 | 0.7922 | 0.6888 |
354
+ | 0.5261 | 298.77 | 971 | 0.7921 | 0.6888 |
355
+ | 0.5261 | 300.0 | 975 | 0.7912 | 0.6853 |
356
+ | 0.5261 | 300.92 | 978 | 0.7907 | 0.6853 |
357
+ | 0.5261 | 301.85 | 981 | 0.7896 | 0.6853 |
358
+ | 0.5261 | 302.77 | 984 | 0.7885 | 0.6888 |
359
+ | 0.5261 | 304.0 | 988 | 0.7877 | 0.6888 |
360
+ | 0.5261 | 304.92 | 991 | 0.7874 | 0.6888 |
361
+ | 0.5261 | 305.85 | 994 | 0.7876 | 0.6888 |
362
+ | 0.5261 | 306.77 | 997 | 0.7879 | 0.6888 |
363
+ | 0.5188 | 308.0 | 1001 | 0.7884 | 0.6888 |
364
+ | 0.5188 | 308.92 | 1004 | 0.7887 | 0.6888 |
365
+ | 0.5188 | 309.85 | 1007 | 0.7890 | 0.6888 |
366
+ | 0.5188 | 310.77 | 1010 | 0.7894 | 0.6888 |
367
+ | 0.5188 | 312.0 | 1014 | 0.7899 | 0.6888 |
368
+ | 0.5188 | 312.92 | 1017 | 0.7904 | 0.6888 |
369
+ | 0.5188 | 313.85 | 1020 | 0.7907 | 0.6923 |
370
+ | 0.5188 | 314.77 | 1023 | 0.7910 | 0.6923 |
371
+ | 0.5188 | 316.0 | 1027 | 0.7912 | 0.6923 |
372
+ | 0.5188 | 316.92 | 1030 | 0.7912 | 0.6923 |
373
+ | 0.5188 | 317.85 | 1033 | 0.7912 | 0.6923 |
374
+ | 0.5188 | 318.77 | 1036 | 0.7913 | 0.6923 |
375
+ | 0.5188 | 320.0 | 1040 | 0.7913 | 0.6923 |
376
+ | 0.5188 | 320.92 | 1043 | 0.7912 | 0.6923 |
377
+ | 0.5188 | 321.85 | 1046 | 0.7912 | 0.6923 |
378
+ | 0.5188 | 322.77 | 1049 | 0.7911 | 0.6923 |
379
+ | 0.5194 | 323.08 | 1050 | 0.7911 | 0.6923 |
380
+
381
+
382
+ ### Framework versions
383
+
384
+ - Transformers 4.39.0.dev0
385
+ - Pytorch 2.2.1+cu121
386
+ - Datasets 2.17.1
387
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test",
3
+ "activation_dropout": 0.0,
4
+ "adapter_attn_dim": null,
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": false,
8
+ "apply_spec_augment": true,
9
+ "architectures": [
10
+ "Wav2Vec2ForSequenceClassification"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 128,
15
+ "codevector_dim": 128,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": true,
18
+ "conv_dim": [
19
+ 256,
20
+ 256,
21
+ 256,
22
+ 256,
23
+ 256,
24
+ 256,
25
+ 256
26
+ ],
27
+ "conv_kernel": [
28
+ 10,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 2,
34
+ 2
35
+ ],
36
+ "conv_stride": [
37
+ 5,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2
44
+ ],
45
+ "ctc_loss_reduction": "sum",
46
+ "ctc_zero_infinity": false,
47
+ "diversity_loss_weight": 0.1,
48
+ "do_stable_layer_norm": true,
49
+ "eos_token_id": 2,
50
+ "feat_extract_activation": "gelu",
51
+ "feat_extract_dropout": 0.0,
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.0,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.0,
56
+ "finetuning_task": "audio-classification",
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.0,
59
+ "hidden_dropout_prob": 0.0,
60
+ "hidden_size": 384,
61
+ "id2label": {
62
+ "0": "Helicopter",
63
+ "1": "Jet",
64
+ "2": "Racecar",
65
+ "3": "Rail",
66
+ "4": "Truck"
67
+ },
68
+ "initializer_range": 0.02,
69
+ "intermediate_size": 1536,
70
+ "label2id": {
71
+ "Helicopter": "0",
72
+ "Jet": "1",
73
+ "Racecar": "2",
74
+ "Rail": "3",
75
+ "Truck": "4"
76
+ },
77
+ "layer_norm_eps": 1e-05,
78
+ "layerdrop": 0.0,
79
+ "mask_feature_length": 10,
80
+ "mask_feature_min_masks": 0,
81
+ "mask_feature_prob": 0.0,
82
+ "mask_time_length": 10,
83
+ "mask_time_min_masks": 2,
84
+ "mask_time_prob": 0.65,
85
+ "model_type": "wav2vec2",
86
+ "num_adapter_layers": 3,
87
+ "num_attention_heads": 6,
88
+ "num_codevector_groups": 2,
89
+ "num_codevectors_per_group": 320,
90
+ "num_conv_pos_embedding_groups": 16,
91
+ "num_conv_pos_embeddings": 128,
92
+ "num_feat_extract_layers": 7,
93
+ "num_hidden_layers": 6,
94
+ "num_negatives": 100,
95
+ "output_hidden_size": 384,
96
+ "pad_token_id": 0,
97
+ "proj_codevector_dim": 128,
98
+ "tdnn_dilation": [
99
+ 1,
100
+ 2,
101
+ 3,
102
+ 1,
103
+ 1
104
+ ],
105
+ "tdnn_dim": [
106
+ 512,
107
+ 512,
108
+ 512,
109
+ 512,
110
+ 1500
111
+ ],
112
+ "tdnn_kernel": [
113
+ 5,
114
+ 3,
115
+ 3,
116
+ 1,
117
+ 1
118
+ ],
119
+ "torch_dtype": "float32",
120
+ "transformers_version": "4.39.0.dev0",
121
+ "use_weighted_layer_sum": false,
122
+ "vocab_size": 32,
123
+ "xvector_output_dim": 512
124
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c3e244c3329efe2b605842412c75f54854659e62c0f2622ebb1a31c9ea0b64
3
+ size 52182770