andreeabodea
commited on
Uploaded code for extraction of the text from the sections of a PDF monitoring report of a project
Browse files- extraction_project_report.py +340 -0
extraction_project_report.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import pdfplumber
|
4 |
+
import re
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
import json
|
7 |
+
|
8 |
+
files = [f for f in os.listdir("/Users/andreeabodea/") if f.endswith(".pdf")]
|
9 |
+
print(files)
|
10 |
+
|
11 |
+
"""
|
12 |
+
Extract the text from a section of a PDF file between 'wanted_section' and 'next_section'.
|
13 |
+
Parameters:
|
14 |
+
- path (str): The file path to the PDF file.
|
15 |
+
- wanted_section (str): The section to start extracting text from.
|
16 |
+
- next_section (str): The section to stop extracting text at.
|
17 |
+
Returns:
|
18 |
+
- text (str): The extracted text from the specified section range.
|
19 |
+
"""
|
20 |
+
def get_section(path, wanted_section, next_section):
|
21 |
+
print(wanted_section)
|
22 |
+
|
23 |
+
# Open the PDF file
|
24 |
+
doc = pdfplumber.open(path)
|
25 |
+
start_page = []
|
26 |
+
end_page = []
|
27 |
+
|
28 |
+
# Find the all the pages for the specified sections
|
29 |
+
for page in range(len(doc.pages)):
|
30 |
+
if len(doc.pages[page].search(wanted_section, return_chars = False, case = False)) > 0:
|
31 |
+
start_page.append(page)
|
32 |
+
if len(doc.pages[page].search(next_section, return_chars = False, case = False)) > 0:
|
33 |
+
end_page.append(page)
|
34 |
+
print(max(start_page))
|
35 |
+
print(max(end_page))
|
36 |
+
|
37 |
+
# Extract the text between the start and end page of the wanted section
|
38 |
+
text = []
|
39 |
+
for page_num in range(max(start_page), max(end_page)):
|
40 |
+
page = doc.pages[page_num]
|
41 |
+
text.append(page.extract_text())
|
42 |
+
text = " ".join(text)
|
43 |
+
new_text = text.replace("\n", " ")
|
44 |
+
special_char_unicode_list = ["\u00e4", "\u00f6", "\u00fc", "\u00df"]
|
45 |
+
special_char_replacement_list = ["ae", "oe", "ue", "ss"]
|
46 |
+
for index, special_char in enumerate(special_char_unicode_list):
|
47 |
+
final_text = new_text.replace(special_char, special_char_replacement_list[index])
|
48 |
+
return final_text
|
49 |
+
|
50 |
+
for file in files:
|
51 |
+
|
52 |
+
print("for each pdf file...")
|
53 |
+
path = "/Users/andreeabodea/" + file
|
54 |
+
pdf = pdfplumber.open(path)
|
55 |
+
print(path)
|
56 |
+
|
57 |
+
results_dict = {}
|
58 |
+
results_dict["2.1 Aktualisierte Einordnung des Moduls in das EZ-Programm"] = \
|
59 |
+
get_section(path, "2.1 Aktualisierte Einordnung des Moduls in das EZ-Programm", "2.2 Andere Entwicklungsmaßnahmen im konkreten Interventionsbereich des Moduls")
|
60 |
+
results_dict["2.1 Aktualisierte Einordnung des Moduls in das EZ-Programm"] = \
|
61 |
+
get_section(path,"2.1 Aktualisierte Einordnung des Moduls in das EZ-Programm", "2.2 Andere Entwicklungsmaßnahmen im konkreten Interventionsbereich des Moduls")
|
62 |
+
results_dict["2.2 Andere Entwicklungsmaßnahmen im konkreten Interventionsbereich des Moduls"] = \
|
63 |
+
get_section(path, "2.2 Andere Entwicklungsmaßnahmen im konkreten Interventionsbereich des Moduls", "3. Entwicklungen im Interventionsbereich")
|
64 |
+
results_dict["3. Entwicklungen im Interventionsbereich"] = \
|
65 |
+
get_section(path, "3. Entwicklungen im Interventionsbereich", "4.1 Bewertungen von Zielen, Zielgruppen, Wirkungshypothesen und Indikatoren")
|
66 |
+
results_dict["4.1 Bewertungen von Zielen, Zielgruppen, Wirkungshypothesen und Indikatoren"] = \
|
67 |
+
get_section(path, "4.1 Bewertungen von Zielen, Zielgruppen, Wirkungshypothesen und Indikatoren", "4.2 Umgesetzte Maßnahmen / Aktivitäten während des Berichtszeitraums")
|
68 |
+
results_dict["4.2 Umgesetzte Maßnahmen / Aktivitäten während des Berichtszeitraums"] = \
|
69 |
+
get_section(path, "4.2 Umgesetzte Maßnahmen / Aktivitäten während des Berichtszeitraums", "4.3 Umsetzung von Maßnahmen zur Sicherstellung der nachhaltigen Wirksamkeit")
|
70 |
+
results_dict["4.3 Umsetzung von Maßnahmen zur Sicherstellung der nachhaltigen Wirksamkeit des Vorhabens"] = \
|
71 |
+
get_section(path, "4.3 Umsetzung von Maßnahmen zur Sicherstellung der nachhaltigen Wirksamkeit", "4.4 Laufzeit und Zeitplan")
|
72 |
+
results_dict["4.4 Laufzeit und Zeitplan"] = \
|
73 |
+
get_section(path, "4.4 Laufzeit und Zeitplan", "4.5 Entstandene Kosten und Kostenverschiebungen")
|
74 |
+
results_dict["4.5 Entstandene Kosten und Kostenverschiebungen"] = \
|
75 |
+
get_section(path, "4.5 Entstandene Kosten und Kostenverschiebungen", "4.6 Bewertung der Wirkungen und Risiken")
|
76 |
+
results_dict["4.6 Bewertung der Wirkungen und Risiken"] = \
|
77 |
+
get_section(path, "4.6 Bewertung der Wirkungen und Risiken", "5. Übergeordnete Empfehlungen")
|
78 |
+
results_dict["5.1 Empfehlungen und Merkposten für den Politik- und Schwerpunktdialog"] = \
|
79 |
+
get_section(path, "5.1 Empfehlungen und Merkposten für den Politik- und Schwerpunktdialog", "5.2 Lernerfahrungen, die für die Länderstrategie und zukünftige EZ-Programme")
|
80 |
+
results_dict["5.2 Lernerfahrungen, die für die Länderstrategie und zukünftige EZ-Programme interessant sein könnten"] = \
|
81 |
+
get_section(path, "5.2 Lernerfahrungen", "6. Testat")
|
82 |
+
results_dict["6. Testat (TZ)"] = \
|
83 |
+
get_section(path, "6. Testat", "Anlage 1: Wirkungsmatrix des Moduls")
|
84 |
+
|
85 |
+
print(results_dict)
|
86 |
+
|
87 |
+
json_string = json.dumps(results_dict, indent=4)
|
88 |
+
print(json_string)
|
89 |
+
|
90 |
+
"""
|
91 |
+
def extract_section_text(pdf_path, start_section, end_section=None):
|
92 |
+
Extract text from a specific section of a PDF.
|
93 |
+
|
94 |
+
:param pdf_path: Path to the PDF file.
|
95 |
+
:param start_section: The title of the section to start extracting text.
|
96 |
+
:param end_section: The title of the section to stop extracting text (optional).
|
97 |
+
:return: Extracted text from the specified section.
|
98 |
+
text = ""
|
99 |
+
section_started = False
|
100 |
+
with fitz.open(pdf_path) as doc: # Open the PDF
|
101 |
+
for page in doc: # Iterate through each page
|
102 |
+
page_text = page.get_text("text") # Extract text from the current page
|
103 |
+
if start_section in page_text and not section_started:
|
104 |
+
# Start section found
|
105 |
+
section_started = True
|
106 |
+
text += page_text
|
107 |
+
elif section_started:
|
108 |
+
if end_section and end_section in page_text:
|
109 |
+
# End section found, stop reading further
|
110 |
+
break
|
111 |
+
else:
|
112 |
+
# Continue adding text from the section
|
113 |
+
text += page_text
|
114 |
+
|
115 |
+
# Optional: refine text extraction, if necessary
|
116 |
+
if section_started:
|
117 |
+
# If the start section is in the middle of the page, trim the text before it
|
118 |
+
start_index = text.find(start_section)
|
119 |
+
text = text[start_index:]
|
120 |
+
|
121 |
+
if end_section:
|
122 |
+
# If an end section is specified, trim the text after it
|
123 |
+
end_index = text.find(end_section)
|
124 |
+
if end_index != -1:
|
125 |
+
text = text[:end_index]
|
126 |
+
|
127 |
+
return text
|
128 |
+
|
129 |
+
# create function to read pdf and extract appendix 1 with results matrix
|
130 |
+
def get_appendix(pdf):
|
131 |
+
#for each page, check whether it contains Anlage 1 and Anlage 2 to get relevant pages
|
132 |
+
start_page = []
|
133 |
+
end_page = []
|
134 |
+
for page in range(len(pdf.pages)):
|
135 |
+
if len(pdf.pages[page].search("Anlage 1: Wirkungsmatrix", return_chars=False, case = False)) > 0: # FOR PROJECTS
|
136 |
+
# if len(pdf.pages[page].search("A1 - Wirkungsmatrix", return_chars=False, case=False)) > 0: # FOR PROGRAMS
|
137 |
+
start_page.append(page)
|
138 |
+
if len(pdf.pages[page].search("Anlage 2: Wirkungslogik", return_chars=False, case = False)) > 0: # FOR PROJECTS
|
139 |
+
# if len(pdf.pages[page].search("A2 - Daten", return_chars=False, case = False)) > 0: # FOR PROGRAMS
|
140 |
+
end_page.append(page)
|
141 |
+
# return results
|
142 |
+
return start_page, end_page
|
143 |
+
|
144 |
+
# create function to parse table from results_matrix and transform to dataframe
|
145 |
+
def extract_tables_from_pdf(start_page, end_page):
|
146 |
+
|
147 |
+
# for each page in appendix
|
148 |
+
for page in range(max(start_page), max(end_page)):
|
149 |
+
|
150 |
+
try:
|
151 |
+
# extract table(s)
|
152 |
+
table = pdf.pages[page].extract_tables()[0]
|
153 |
+
except IndexError:
|
154 |
+
break
|
155 |
+
|
156 |
+
print(table)
|
157 |
+
|
158 |
+
# for each row of the table...
|
159 |
+
for row_num in range(len(table)):
|
160 |
+
row = table[row_num]
|
161 |
+
|
162 |
+
# ...remove the line breakers from the wrapped texts
|
163 |
+
cleaned_row = [item.replace("-\n", "") if item is not None and "-\n" in item
|
164 |
+
else "None" if item is None
|
165 |
+
else item for item in row]
|
166 |
+
|
167 |
+
cleaned_row = [item.replace("\n", " ") if item is not None and "\n" in item
|
168 |
+
else "None" if item is None
|
169 |
+
else item for item in cleaned_row]
|
170 |
+
|
171 |
+
# append row to results_matrix_list
|
172 |
+
results_matrix_list.append(cleaned_row)
|
173 |
+
|
174 |
+
return results_matrix_list
|
175 |
+
|
176 |
+
# define function to extract programm-infos
|
177 |
+
def extract_programm(table_rows_list, file_name):
|
178 |
+
# define empty lists to save results
|
179 |
+
programmziel = []
|
180 |
+
pz_indikator = []
|
181 |
+
basiswert = []
|
182 |
+
zielwert = []
|
183 |
+
istwert = []
|
184 |
+
|
185 |
+
# for each row in results matrix (list), extract elements
|
186 |
+
for row in table_rows_list:
|
187 |
+
for i in row:
|
188 |
+
if "Programmziel " in i:
|
189 |
+
programmziel.append(i)
|
190 |
+
else:
|
191 |
+
pass
|
192 |
+
if "Programmzielindikator" in i:
|
193 |
+
pz_indikator.append(i)
|
194 |
+
else:
|
195 |
+
pass
|
196 |
+
|
197 |
+
# extract values from impact indicators
|
198 |
+
for indikator in pz_indikator:
|
199 |
+
if (("Basiswert:" in indikator) and ("Zielwert:" in indikator)):
|
200 |
+
index1 = indikator.index("Basiswert:")
|
201 |
+
index2 = indikator.index("Zielwert:")
|
202 |
+
basiswert.append(indikator[index1 + len("Basiswert:") + 1: index2])
|
203 |
+
elif (("Basiswert:" in indikator) and ("Zielwert:" not in indikator)):
|
204 |
+
basiswert.append(indikator.split("Basiswert:")[1])
|
205 |
+
else:
|
206 |
+
basiswert.append("")
|
207 |
+
if (("Zielwert:" in indikator) and ("Istwert:" in indikator)):
|
208 |
+
index1 = indikator.index("Zielwert:")
|
209 |
+
index2 = indikator.index("Istwert:")
|
210 |
+
zielwert.append(indikator[index1 + len("Zielwert:") + 1: index2])
|
211 |
+
elif (("Zielwert:" in indikator) and ("Istwert:" not in indikator)):
|
212 |
+
zielwert.append(indikator.split("Zielwert:")[1])
|
213 |
+
else:
|
214 |
+
zielwert.append("")
|
215 |
+
if "Istwert:" in indikator:
|
216 |
+
istwert.append(indikator.split("Istwert:")[1])
|
217 |
+
else:
|
218 |
+
istwert.append("")
|
219 |
+
|
220 |
+
# create dataframes for each tier (programm, modul, output)
|
221 |
+
programm = p
|
222 |
+
|
223 |
+
# extract values from outcome indicators
|
224 |
+
for indikator in mz_indikator:
|
225 |
+
if (("Basiswert:" in indikator) and ("Zielwert:" in indikator)):
|
226 |
+
index1 = indikator.index("Basiswert:")
|
227 |
+
index2 = indikator.index("Zielwert:")
|
228 |
+
basiswert.append(indikator[index1 + len("Basiswert:") + 1: index2])
|
229 |
+
elif (("Basiswert:" in indikator) and ("Zielwert:" not in indikator)):
|
230 |
+
basiswert.append(indikator.split("Basiswert:")[1])
|
231 |
+
else:
|
232 |
+
basiswert.append("")
|
233 |
+
if (("Zielwert:" in indikator) and ("Istwert:" in indikator)):
|
234 |
+
index1 = indikator.index("Zielwert:")
|
235 |
+
index2 = indikator.index("Istwert:")
|
236 |
+
zielwert.append(indikator[index1 + len("Zielwert:") + 1: index2])
|
237 |
+
elif (("Zielwert:" in indikator) and ("Istwert:" not in indikator)):
|
238 |
+
zielwert.append(indikator.split("Zielwert:")[1])
|
239 |
+
else:
|
240 |
+
zielwert.append("")
|
241 |
+
if "Istwert:" in indikator:
|
242 |
+
istwert.append(indikator.split("Istwert:")[1])
|
243 |
+
else:
|
244 |
+
istwert.append("")
|
245 |
+
|
246 |
+
# create dataframes for each tier (programm, modul, output)
|
247 |
+
outcome = pd.DataFrame.from_dict({"ziel":modulziel, "indikator":mz_indikator,"basiswert": basiswert,
|
248 |
+
"zielwert": zielwert, "istwert": istwert,"datei":[file_name]*len(mz_indikator)},
|
249 |
+
orient="index")
|
250 |
+
outcome = outcome.transpose()
|
251 |
+
|
252 |
+
return outcome
|
253 |
+
|
254 |
+
# define function for outputs
|
255 |
+
def extract_outputs(table_rows_list,file_name):
|
256 |
+
# define empty lists to save results
|
257 |
+
output = []
|
258 |
+
output_indikator = []
|
259 |
+
basiswert = []
|
260 |
+
zielwert = []
|
261 |
+
istwert = []
|
262 |
+
|
263 |
+
# for each row in results matrix (list), extract elements
|
264 |
+
for row in table_rows_list:
|
265 |
+
for i in row:
|
266 |
+
if "Output " in i:
|
267 |
+
output.append(i)
|
268 |
+
else:
|
269 |
+
pass
|
270 |
+
if "Outputindikator" in i:
|
271 |
+
output_indikator.append(i)
|
272 |
+
else:
|
273 |
+
pass
|
274 |
+
|
275 |
+
# extract values from output indicators
|
276 |
+
for indikator in output_indikator:
|
277 |
+
if (("Basiswert:" in indikator) and ("Zielwert:" in indikator)):
|
278 |
+
index1 = indikator.index("Basiswert:")
|
279 |
+
index2 = indikator.index("Zielwert:")
|
280 |
+
basiswert.append(indikator[index1 + len("Basiswert:") + 1: index2])
|
281 |
+
elif (("Basiswert:" in indikator) and ("Zielwert:" not in indikator)):
|
282 |
+
basiswert.append(indikator.split("Basiswert:")[1])
|
283 |
+
else:
|
284 |
+
basiswert.append("")
|
285 |
+
if (("Zielwert:" in indikator) and ("Istwert:" in indikator)):
|
286 |
+
index1 = indikator.index("Zielwert:")
|
287 |
+
index2 = indikator.index("Istwert:")
|
288 |
+
zielwert.append(indikator[index1 + len("Zielwert:") + 1: index2])
|
289 |
+
elif (("Zielwert:" in indikator) and ("Istwert:" not in indikator)):
|
290 |
+
zielwert.append(indikator.split("Zielwert:")[1])
|
291 |
+
else:
|
292 |
+
zielwert.append("")
|
293 |
+
if "Istwert:" in indikator:
|
294 |
+
istwert.append(indikator.split("Istwert:")[1])
|
295 |
+
else:
|
296 |
+
istwert.append("")
|
297 |
+
|
298 |
+
# create dataframes for each tier (programm, modul, output)
|
299 |
+
output = pd.DataFrame.from_dict({"output":output, "indikator":output_indikator, "basiswert": basiswert,
|
300 |
+
"zielwert": zielwert, "istwert": istwert,"datei":[file_name]*len(output_indikator)},
|
301 |
+
orient = "index")
|
302 |
+
output = output.transpose()
|
303 |
+
return output
|
304 |
+
|
305 |
+
# apply functions to files
|
306 |
+
#Define global dataframes to store results from all files
|
307 |
+
programme = pd.DataFrame(columns = ["ziel", "indikator", "basiswert", "zielwert", "istwert", "datei"])
|
308 |
+
outcomes = pd.DataFrame(columns = ["ziel", "indikator", "basiswert", "zielwert", "istwert", "datei"])
|
309 |
+
outputs = pd.DataFrame(columns = ["output", "indikator", "basiswert", "zielwert", "istwert", "datei"])
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
print("...and extract table and store as list")
|
314 |
+
results_matrix_list = extract_tables_from_pdf(start_page, end_page)
|
315 |
+
|
316 |
+
print("...extract programm information")
|
317 |
+
programm = extract_programm(results_matrix_list, file)
|
318 |
+
|
319 |
+
print("...extract modul information")
|
320 |
+
outcome = extract_modul(results_matrix_list, file)
|
321 |
+
|
322 |
+
print("...extract outputs")
|
323 |
+
output = extract_outputs(results_matrix_list, file)
|
324 |
+
|
325 |
+
print("...add results from extract functions to global dataframe")
|
326 |
+
programme = pd.concat([programme, programm], ignore_index=True)
|
327 |
+
outcomes = pd.concat([outcomes, outcome], ignore_index=True)
|
328 |
+
outputs = pd.concat([outputs, output], ignore_index=True)
|
329 |
+
|
330 |
+
# write results to csv file
|
331 |
+
programme.to_csv("/Users/andreeabodea/programme.csv", sep="|", index=False, decimal=",")
|
332 |
+
outcomes.to_csv("/Users/andreeabodea/module_outcomes.csv", sep="|", index=False, decimal=",")
|
333 |
+
outputs.to_csv("/Users/andreeabodea/module_outputs.csv", sep="|", index=False, decimal=",")
|
334 |
+
|
335 |
+
print(programme)
|
336 |
+
print(outcomes)
|
337 |
+
print(outputs)
|
338 |
+
|
339 |
+
|
340 |
+
"""
|