andrey18106 commited on
Commit
dbc18e6
·
verified ·
1 Parent(s): 89c85ca

feat: add mmdet face files

Browse files

Signed-off-by: Andrey Borysenko <[email protected]>

mmdet/bbox/mmdet_anime-face_yolov3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38208bb6b8a4633193feba532e96ed9a7942129af8fe948b27bfcf8e9a30a12e
3
+ size 246462357
mmdet/bbox/mmdet_anime-face_yolov3.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # _base_ = ["../_base_/schedules/schedule_1x.py", "../_base_/default_runtime.py"]
2
+ # model settings
3
+ data_preprocessor = dict(
4
+ type="DetDataPreprocessor",
5
+ mean=[0, 0, 0],
6
+ std=[255.0, 255.0, 255.0],
7
+ bgr_to_rgb=True,
8
+ pad_size_divisor=32,
9
+ )
10
+ model = dict(
11
+ type="YOLOV3",
12
+ data_preprocessor=data_preprocessor,
13
+ backbone=dict(
14
+ type="Darknet",
15
+ depth=53,
16
+ out_indices=(3, 4, 5),
17
+ init_cfg=dict(type="Pretrained", checkpoint="open-mmlab://darknet53"),
18
+ ),
19
+ neck=dict(
20
+ type="YOLOV3Neck",
21
+ num_scales=3,
22
+ in_channels=[1024, 512, 256],
23
+ out_channels=[512, 256, 128],
24
+ ),
25
+ bbox_head=dict(
26
+ type="YOLOV3Head",
27
+ num_classes=1,
28
+ in_channels=[512, 256, 128],
29
+ out_channels=[1024, 512, 256],
30
+ anchor_generator=dict(
31
+ type="YOLOAnchorGenerator",
32
+ base_sizes=[
33
+ [(116, 90), (156, 198), (373, 326)],
34
+ [(30, 61), (62, 45), (59, 119)],
35
+ [(10, 13), (16, 30), (33, 23)],
36
+ ],
37
+ strides=[32, 16, 8],
38
+ ),
39
+ bbox_coder=dict(type="YOLOBBoxCoder"),
40
+ featmap_strides=[32, 16, 8],
41
+ loss_cls=dict(
42
+ type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0, reduction="sum"
43
+ ),
44
+ loss_conf=dict(
45
+ type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0, reduction="sum"
46
+ ),
47
+ loss_xy=dict(
48
+ type="CrossEntropyLoss", use_sigmoid=True, loss_weight=2.0, reduction="sum"
49
+ ),
50
+ loss_wh=dict(type="MSELoss", loss_weight=2.0, reduction="sum"),
51
+ ),
52
+ # training and testing settings
53
+ train_cfg=dict(
54
+ assigner=dict(
55
+ type="GridAssigner", pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0
56
+ )
57
+ ),
58
+ test_cfg=dict(
59
+ nms_pre=1000,
60
+ min_bbox_size=0,
61
+ score_thr=0.05,
62
+ conf_thr=0.005,
63
+ nms=dict(type="nms", iou_threshold=0.45),
64
+ max_per_img=100,
65
+ ),
66
+ )
67
+ # dataset settings
68
+ dataset_type = "CocoDataset"
69
+ data_root = "data/coco/"
70
+
71
+ # Example to use different file client
72
+ # Method 1: simply set the data root and let the file I/O module
73
+ # automatically infer from prefix (not support LMDB and Memcache yet)
74
+
75
+ # data_root = 's3://openmmlab/datasets/detection/coco/'
76
+
77
+ # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
78
+ # backend_args = dict(
79
+ # backend='petrel',
80
+ # path_mapping=dict({
81
+ # './data/': 's3://openmmlab/datasets/detection/',
82
+ # 'data/': 's3://openmmlab/datasets/detection/'
83
+ # }))
84
+ backend_args = None
85
+
86
+ train_pipeline = [
87
+ dict(type="LoadImageFromFile", backend_args=backend_args),
88
+ dict(type="LoadAnnotations", with_bbox=True),
89
+ dict(
90
+ type="Expand",
91
+ mean=data_preprocessor["mean"],
92
+ to_rgb=data_preprocessor["bgr_to_rgb"],
93
+ ratio_range=(1, 2),
94
+ ),
95
+ dict(
96
+ type="MinIoURandomCrop",
97
+ min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
98
+ min_crop_size=0.3,
99
+ ),
100
+ dict(type="RandomResize", scale=[(320, 320), (608, 608)], keep_ratio=True),
101
+ dict(type="RandomFlip", prob=0.5),
102
+ dict(type="PhotoMetricDistortion"),
103
+ dict(type="PackDetInputs"),
104
+ ]
105
+ test_pipeline = [
106
+ dict(type="LoadImageFromFile", backend_args=backend_args),
107
+ dict(type="Resize", scale=(608, 608), keep_ratio=True),
108
+ dict(type="LoadAnnotations", with_bbox=True),
109
+ dict(
110
+ type="PackDetInputs",
111
+ meta_keys=("img_id", "img_path", "ori_shape", "img_shape", "scale_factor"),
112
+ ),
113
+ ]
114
+
115
+ train_dataloader = dict(
116
+ batch_size=8,
117
+ num_workers=4,
118
+ persistent_workers=True,
119
+ sampler=dict(type="DefaultSampler", shuffle=True),
120
+ batch_sampler=dict(type="AspectRatioBatchSampler"),
121
+ dataset=dict(
122
+ type=dataset_type,
123
+ data_root=data_root,
124
+ ann_file="annotations/instances_train2017.json",
125
+ data_prefix=dict(img="train2017/"),
126
+ filter_cfg=dict(filter_empty_gt=True, min_size=32),
127
+ pipeline=train_pipeline,
128
+ backend_args=backend_args,
129
+ ),
130
+ )
131
+ val_dataloader = dict(
132
+ batch_size=1,
133
+ num_workers=2,
134
+ persistent_workers=True,
135
+ drop_last=False,
136
+ sampler=dict(type="DefaultSampler", shuffle=False),
137
+ dataset=dict(
138
+ type=dataset_type,
139
+ data_root=data_root,
140
+ ann_file="annotations/instances_val2017.json",
141
+ data_prefix=dict(img="val2017/"),
142
+ test_mode=True,
143
+ pipeline=test_pipeline,
144
+ backend_args=backend_args,
145
+ ),
146
+ )
147
+ test_dataloader = val_dataloader
148
+
149
+ val_evaluator = dict(
150
+ type="CocoMetric",
151
+ ann_file=data_root + "annotations/instances_val2017.json",
152
+ metric="bbox",
153
+ backend_args=backend_args,
154
+ )
155
+ test_evaluator = val_evaluator
156
+
157
+ train_cfg = dict(max_epochs=273, val_interval=7)
158
+
159
+ # optimizer
160
+ optim_wrapper = dict(
161
+ type="OptimWrapper",
162
+ optimizer=dict(type="SGD", lr=0.001, momentum=0.9, weight_decay=0.0005),
163
+ clip_grad=dict(max_norm=35, norm_type=2),
164
+ )
165
+
166
+ # learning policy
167
+ param_scheduler = [
168
+ dict(type="LinearLR", start_factor=0.1, by_epoch=False, begin=0, end=2000),
169
+ dict(type="MultiStepLR", by_epoch=True, milestones=[218, 246], gamma=0.1),
170
+ ]
171
+
172
+ default_hooks = dict(checkpoint=dict(type="CheckpointHook", interval=7))
173
+
174
+ # NOTE: `auto_scale_lr` is for automatically scaling LR,
175
+ # USER SHOULD NOT CHANGE ITS VALUES.
176
+ # base_batch_size = (8 GPUs) x (8 samples per GPU)
177
+ auto_scale_lr = dict(base_batch_size=64)