angelitasr commited on
Commit
f7e6264
·
verified ·
1 Parent(s): 2bb9524

End of training

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3503
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-base-en-v1.5
10
+ widget:
11
+ - source_sentence: '###Question###:Factorising into a Double Bracket-Factorise a quadratic
12
+ expression in the form x² + bx - c-If
13
+
14
+ \(
15
+
16
+ m^{2}+5 m-14 \equiv(m+a)(m+b)
17
+
18
+ \)
19
+
20
+ then \( a \times b= \)
21
+
22
+ ###Correct Answer###:\( -14 \)
23
+
24
+ ###Misconcepted Incorrect answer###:\( 5 \)'
25
+ sentences:
26
+ - Does not know that units of volume are usually cubed
27
+ - Believes the coefficent of x in an expanded quadratic comes from multiplying the
28
+ two numbers in the brackets
29
+ - Does not copy a given method accurately
30
+ - source_sentence: '###Question###:Rounding to the Nearest Whole (10, 100, etc)-Round
31
+ non-integers to the nearest 10-What is \( \mathbf{8 6 9 8 . 9} \) rounded to the
32
+ nearest ten?
33
+
34
+ ###Correct Answer###:\( 8700 \)
35
+
36
+ ###Misconcepted Incorrect answer###:\( 8699 \)'
37
+ sentences:
38
+ - Rounds to the wrong degree of accuracy (rounds too much)
39
+ - 'Believes division is commutative '
40
+ - Believes that a number divided by itself equals 0
41
+ - source_sentence: '###Question###:Simultaneous Equations-Solve linear simultaneous
42
+ equations requiring a scaling of both expressions-If five cups of tea and two
43
+ cups of coffee cost \( £ 3.70 \), and two cups of tea and five cups of coffee
44
+ cost \( £ 4.00 \), what is the cost of a cup of tea and a cup of coffee?
45
+
46
+ ###Correct Answer###:Tea \( =50 \mathrm{p} \) coffee \( =60 p \)
47
+
48
+ ###Misconcepted Incorrect answer###:\( \begin{array}{l}\text { Tea }=0.5 \\ \text
49
+ { coffee }=0.6\end{array} \)'
50
+ sentences:
51
+ - Misinterprets the meaning of angles on a straight line angle fact
52
+ - Does not include units in answer.
53
+ - Believes midpoint calculation is just half of the difference
54
+ - source_sentence: '###Question###:Quadratic Sequences-Find the nth term rule for
55
+ ascending quadratic sequences in the form ax² + bx + c-\(
56
+
57
+ 6,14,28,48,74, \ldots
58
+
59
+ \)
60
+
61
+
62
+ When calculating the nth-term rule of this sequence, what should replace the triangle?
63
+
64
+
65
+ nth-term rule: \( 3 n^{2} \)\( \color{red}\triangle \) \(n\) \( \color{purple}\square
66
+ \)
67
+
68
+
69
+ ###Correct Answer###:\( -1 \)
70
+
71
+ (or just a - sign)
72
+
73
+ ###Misconcepted Incorrect answer###:\[
74
+
75
+ +1
76
+
77
+ \]
78
+
79
+ (or just a + sign)'
80
+ sentences:
81
+ - 'When finding the differences between terms in a sequence, believes they can do
82
+ so from right to left '
83
+ - When solving an equation forgets to eliminate the coefficient in front of the
84
+ variable in the last step
85
+ - Believes parallelogram is the term used to describe two lines at right angles
86
+ - source_sentence: '###Question###:Written Multiplication-Multiply 2 digit integers
87
+ by 2 digit integers using long multiplication-Which working out is correct for
88
+ $72 \times 36$?
89
+
90
+ ###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct
91
+ working and correct final answer. First row of working is correct: 4 3 2. Second
92
+ row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]()
93
+
94
+ ###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by
95
+ 36 with incorrect working and incorrect final answer. First row of working is
96
+ incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect:
97
+ 4 4 9.]()'
98
+ sentences:
99
+ - When solving an equation forgets to eliminate the coefficient in front of the
100
+ variable in the last step
101
+ - Thinks a variable next to a number means addition rather than multiplication
102
+ - When two digits multiply to 10 or more during a multiplication problem, does not
103
+ add carried value to the preceding digit
104
+ pipeline_tag: sentence-similarity
105
+ library_name: sentence-transformers
106
+ ---
107
+
108
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
109
+
110
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
111
+
112
+ ## Model Details
113
+
114
+ ### Model Description
115
+ - **Model Type:** Sentence Transformer
116
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
117
+ - **Maximum Sequence Length:** 512 tokens
118
+ - **Output Dimensionality:** 768 tokens
119
+ - **Similarity Function:** Cosine Similarity
120
+ <!-- - **Training Dataset:** Unknown -->
121
+ <!-- - **Language:** Unknown -->
122
+ <!-- - **License:** Unknown -->
123
+
124
+ ### Model Sources
125
+
126
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
127
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
128
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
129
+
130
+ ### Full Model Architecture
131
+
132
+ ```
133
+ SentenceTransformer(
134
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
135
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
136
+ (2): Normalize()
137
+ )
138
+ ```
139
+
140
+ ## Usage
141
+
142
+ ### Direct Usage (Sentence Transformers)
143
+
144
+ First install the Sentence Transformers library:
145
+
146
+ ```bash
147
+ pip install -U sentence-transformers
148
+ ```
149
+
150
+ Then you can load this model and run inference.
151
+ ```python
152
+ from sentence_transformers import SentenceTransformer
153
+
154
+ # Download from the 🤗 Hub
155
+ model = SentenceTransformer("sentence_transformers_model_id")
156
+ # Run inference
157
+ sentences = [
158
+ '###Question###:Written Multiplication-Multiply 2 digit integers by 2 digit integers using long multiplication-Which working out is correct for $72 \\times 36$?\n###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct working and correct final answer. First row of working is correct: 4 3 2. Second row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]()\n###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by 36 with incorrect working and incorrect final answer. First row of working is incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect: 4 4 9.]()',
159
+ 'When two digits multiply to 10 or more during a multiplication problem, does not add carried value to the preceding digit',
160
+ 'Thinks a variable next to a number means addition rather than multiplication',
161
+ ]
162
+ embeddings = model.encode(sentences)
163
+ print(embeddings.shape)
164
+ # [3, 768]
165
+
166
+ # Get the similarity scores for the embeddings
167
+ similarities = model.similarity(embeddings, embeddings)
168
+ print(similarities.shape)
169
+ # [3, 3]
170
+ ```
171
+
172
+ <!--
173
+ ### Direct Usage (Transformers)
174
+
175
+ <details><summary>Click to see the direct usage in Transformers</summary>
176
+
177
+ </details>
178
+ -->
179
+
180
+ <!--
181
+ ### Downstream Usage (Sentence Transformers)
182
+
183
+ You can finetune this model on your own dataset.
184
+
185
+ <details><summary>Click to expand</summary>
186
+
187
+ </details>
188
+ -->
189
+
190
+ <!--
191
+ ### Out-of-Scope Use
192
+
193
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
194
+ -->
195
+
196
+ <!--
197
+ ## Bias, Risks and Limitations
198
+
199
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
200
+ -->
201
+
202
+ <!--
203
+ ### Recommendations
204
+
205
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
206
+ -->
207
+
208
+ ## Training Details
209
+
210
+ ### Training Dataset
211
+
212
+ #### Unnamed Dataset
213
+
214
+
215
+ * Size: 3,503 training samples
216
+ * Columns: <code>anchor</code> and <code>positive</code>
217
+ * Approximate statistics based on the first 1000 samples:
218
+ | | anchor | positive |
219
+ |:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
220
+ | type | string | string |
221
+ | details | <ul><li>min: 60 tokens</li><li>mean: 122.66 tokens</li><li>max: 415 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.9 tokens</li><li>max: 39 tokens</li></ul> |
222
+ * Samples:
223
+ | anchor | positive |
224
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
225
+ | <code>###Question###:Area of Simple Shapes-Calculate the area of a parallelogram where the dimensions are given in the same units-What is the area of this shape? ![A parallelogram drawn on a square grid in purple with an area of 9 square units. The base is length 3 squares and the perpendicular height is also length 3 squares.]()<br>###Correct Answer###:\( 9 \)<br>###Misconcepted Incorrect answer###:\( 12 \)</code> | <code>Counts half-squares as full squares when calculating area on a square grid</code> |
226
+ | <code>###Question###:Substitution into Formula-Substitute into simple formulae given in words-A theme park charges \( £ 8 \) entry fee and then \( £ 3 \) for every ride you go on.<br>Heena goes on \( 5 \) rides.<br>How much does she pay in total?<br>###Correct Answer###:\( £ 23 \)<br>###Misconcepted Incorrect answer###:\( £ 55 \)</code> | <code>Combines variables with constants when writing a formula from a given situation</code> |
227
+ | <code>###Question###:Trial and Improvement and Iterative Methods-Use area to write algebraic expressions-The area of the rectangle on the right is \( 8 \mathrm{~cm}^{2} \).<br><br>Which of the following equations can we write from the information given? ![A rectangle with the short side labelled \(x\) and the opposite side labelled \(x^2 + 9\).]()<br>###Correct Answer###:\( x^{3}+9 x=8 \)<br>###Misconcepted Incorrect answer###:\( x^{3}+9=8 \)</code> | <code>Only multiplies the first term in the expansion of a bracket</code> |
228
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
229
+ ```json
230
+ {
231
+ "scale": 20.0,
232
+ "similarity_fct": "cos_sim"
233
+ }
234
+ ```
235
+
236
+ ### Training Hyperparameters
237
+ #### Non-Default Hyperparameters
238
+
239
+ - `num_train_epochs`: 5
240
+ - `fp16`: True
241
+ - `push_to_hub`: True
242
+ - `batch_sampler`: no_duplicates
243
+
244
+ #### All Hyperparameters
245
+ <details><summary>Click to expand</summary>
246
+
247
+ - `overwrite_output_dir`: False
248
+ - `do_predict`: False
249
+ - `eval_strategy`: no
250
+ - `prediction_loss_only`: True
251
+ - `per_device_train_batch_size`: 8
252
+ - `per_device_eval_batch_size`: 8
253
+ - `per_gpu_train_batch_size`: None
254
+ - `per_gpu_eval_batch_size`: None
255
+ - `gradient_accumulation_steps`: 1
256
+ - `eval_accumulation_steps`: None
257
+ - `torch_empty_cache_steps`: None
258
+ - `learning_rate`: 5e-05
259
+ - `weight_decay`: 0.0
260
+ - `adam_beta1`: 0.9
261
+ - `adam_beta2`: 0.999
262
+ - `adam_epsilon`: 1e-08
263
+ - `max_grad_norm`: 1.0
264
+ - `num_train_epochs`: 5
265
+ - `max_steps`: -1
266
+ - `lr_scheduler_type`: linear
267
+ - `lr_scheduler_kwargs`: {}
268
+ - `warmup_ratio`: 0.0
269
+ - `warmup_steps`: 0
270
+ - `log_level`: passive
271
+ - `log_level_replica`: warning
272
+ - `log_on_each_node`: True
273
+ - `logging_nan_inf_filter`: True
274
+ - `save_safetensors`: True
275
+ - `save_on_each_node`: False
276
+ - `save_only_model`: False
277
+ - `restore_callback_states_from_checkpoint`: False
278
+ - `no_cuda`: False
279
+ - `use_cpu`: False
280
+ - `use_mps_device`: False
281
+ - `seed`: 42
282
+ - `data_seed`: None
283
+ - `jit_mode_eval`: False
284
+ - `use_ipex`: False
285
+ - `bf16`: False
286
+ - `fp16`: True
287
+ - `fp16_opt_level`: O1
288
+ - `half_precision_backend`: auto
289
+ - `bf16_full_eval`: False
290
+ - `fp16_full_eval`: False
291
+ - `tf32`: None
292
+ - `local_rank`: 0
293
+ - `ddp_backend`: None
294
+ - `tpu_num_cores`: None
295
+ - `tpu_metrics_debug`: False
296
+ - `debug`: []
297
+ - `dataloader_drop_last`: False
298
+ - `dataloader_num_workers`: 0
299
+ - `dataloader_prefetch_factor`: None
300
+ - `past_index`: -1
301
+ - `disable_tqdm`: False
302
+ - `remove_unused_columns`: True
303
+ - `label_names`: None
304
+ - `load_best_model_at_end`: False
305
+ - `ignore_data_skip`: False
306
+ - `fsdp`: []
307
+ - `fsdp_min_num_params`: 0
308
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
309
+ - `fsdp_transformer_layer_cls_to_wrap`: None
310
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
311
+ - `deepspeed`: None
312
+ - `label_smoothing_factor`: 0.0
313
+ - `optim`: adamw_torch
314
+ - `optim_args`: None
315
+ - `adafactor`: False
316
+ - `group_by_length`: False
317
+ - `length_column_name`: length
318
+ - `ddp_find_unused_parameters`: None
319
+ - `ddp_bucket_cap_mb`: None
320
+ - `ddp_broadcast_buffers`: False
321
+ - `dataloader_pin_memory`: True
322
+ - `dataloader_persistent_workers`: False
323
+ - `skip_memory_metrics`: True
324
+ - `use_legacy_prediction_loop`: False
325
+ - `push_to_hub`: True
326
+ - `resume_from_checkpoint`: None
327
+ - `hub_model_id`: None
328
+ - `hub_strategy`: every_save
329
+ - `hub_private_repo`: False
330
+ - `hub_always_push`: False
331
+ - `gradient_checkpointing`: False
332
+ - `gradient_checkpointing_kwargs`: None
333
+ - `include_inputs_for_metrics`: False
334
+ - `eval_do_concat_batches`: True
335
+ - `fp16_backend`: auto
336
+ - `push_to_hub_model_id`: None
337
+ - `push_to_hub_organization`: None
338
+ - `mp_parameters`:
339
+ - `auto_find_batch_size`: False
340
+ - `full_determinism`: False
341
+ - `torchdynamo`: None
342
+ - `ray_scope`: last
343
+ - `ddp_timeout`: 1800
344
+ - `torch_compile`: False
345
+ - `torch_compile_backend`: None
346
+ - `torch_compile_mode`: None
347
+ - `dispatch_batches`: None
348
+ - `split_batches`: None
349
+ - `include_tokens_per_second`: False
350
+ - `include_num_input_tokens_seen`: False
351
+ - `neftune_noise_alpha`: None
352
+ - `optim_target_modules`: None
353
+ - `batch_eval_metrics`: False
354
+ - `eval_on_start`: False
355
+ - `use_liger_kernel`: False
356
+ - `eval_use_gather_object`: False
357
+ - `batch_sampler`: no_duplicates
358
+ - `multi_dataset_batch_sampler`: proportional
359
+
360
+ </details>
361
+
362
+ ### Training Logs
363
+ | Epoch | Step | Training Loss |
364
+ |:------:|:----:|:-------------:|
365
+ | 1.1416 | 500 | 0.3382 |
366
+ | 2.2831 | 1000 | 0.1004 |
367
+ | 3.4247 | 1500 | 0.0386 |
368
+ | 4.5662 | 2000 | 0.0133 |
369
+
370
+
371
+ ### Framework Versions
372
+ - Python: 3.10.12
373
+ - Sentence Transformers: 3.1.1
374
+ - Transformers: 4.45.2
375
+ - PyTorch: 2.5.1+cu121
376
+ - Accelerate: 1.1.1
377
+ - Datasets: 3.1.0
378
+ - Tokenizers: 0.20.3
379
+
380
+ ## Citation
381
+
382
+ ### BibTeX
383
+
384
+ #### Sentence Transformers
385
+ ```bibtex
386
+ @inproceedings{reimers-2019-sentence-bert,
387
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
388
+ author = "Reimers, Nils and Gurevych, Iryna",
389
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
390
+ month = "11",
391
+ year = "2019",
392
+ publisher = "Association for Computational Linguistics",
393
+ url = "https://arxiv.org/abs/1908.10084",
394
+ }
395
+ ```
396
+
397
+ #### MultipleNegativesRankingLoss
398
+ ```bibtex
399
+ @misc{henderson2017efficient,
400
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
401
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
402
+ year={2017},
403
+ eprint={1705.00652},
404
+ archivePrefix={arXiv},
405
+ primaryClass={cs.CL}
406
+ }
407
+ ```
408
+
409
+ <!--
410
+ ## Glossary
411
+
412
+ *Clearly define terms in order to be accessible across audiences.*
413
+ -->
414
+
415
+ <!--
416
+ ## Model Card Authors
417
+
418
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Contact
423
+
424
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
425
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f217857f36145603682e9729697dc963acc04f7e8de1e1a3b70e5cf01d66fbe4
3
  size 437951328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482d3785419f7c69dd8f98430f05f947b69e641b45b1bd02458c77b23c554b27
3
  size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }