anilguven commited on
Commit
d20118b
·
verified ·
1 Parent(s): 32a01ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -15,4 +15,53 @@ tags:
15
  - emotion
16
  - sentiment
17
  - tweet
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - emotion
16
  - sentiment
17
  - tweet
18
+ ---
19
+ ### Model Info
20
+
21
+ This model was developed/finetuned for tweet emotion detection task for the Turkish Language. This model was finetuned via tweet dataset. This dataset contains 5 classes: angry, happy, sad, surprised and afraid.
22
+ - LABEL_0: angry
23
+ - LABEL_1: afraid
24
+ - LABEL_2: happy
25
+ - LABEL_3: surprised
26
+ - LABEL_4: sad
27
+
28
+ ### Model Sources
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Dataset:** https://huggingface.co/datasets/anilguven/turkish_tweet_emotion_dataset
33
+ - **Paper:** https://ieeexplore.ieee.org/document/9559014
34
+ - **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_tweet_emotion_analysis_with_language_models
35
+ - **Finetuned from model [optional]:** https://huggingface.co/dbmdz/bert-base-turkish-uncased
36
+
37
+ #### Preprocessing
38
+
39
+ You must apply removing stopwords, stemming, or lemmatization process for Turkish.
40
+
41
+ ### Results
42
+
43
+ - eval_loss = 0.06813859832385788
44
+ - mcc = 0.9843707754295762
45
+ - Accuracy: %98.75
46
+
47
+ ## Citation
48
+
49
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
50
+
51
+ **BibTeX:**
52
+
53
+ *@INPROCEEDINGS{9559014,
54
+ author={Guven, Zekeriya Anil},
55
+ booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)},
56
+ title={Comparison of BERT Models and Machine Learning Methods for Sentiment Analysis on Turkish Tweets},
57
+ year={2021},
58
+ volume={},
59
+ number={},
60
+ pages={98-101},
61
+ keywords={Computer science;Sentiment analysis;Analytical models;Social networking (online);Computational modeling;Bit error rate;Random forests;Sentiment Analysis;BERT;Machine Learning;Text Classification;Tweet Analysis.},
62
+ doi={10.1109/UBMK52708.2021.9559014}}*
63
+
64
+
65
+ **APA:**
66
+
67
+ *Guven, Z. A. (2021, September). Comparison of BERT models and machine learning methods for sentiment analysis on Turkish tweets. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 98-101). IEEE.*