File size: 2,114 Bytes
78e8bdf
 
9addb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3296585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: unknown
datasets:
- anilguven/turkish_tweet_emotion_dataset
language:
- tr
metrics:
- accuracy
- f1
- precision
- recall
tags:
- turkish
- tweet
- emotion
- sentiment
- bert
---
### Model Info

This model was developed/finetuned for tweet emotion detection task for the Turkish Language. This model was finetuned via tweet dataset. This dataset contains 5 classes: angry, happy, sad, surprised and afraid.
- LABEL_0: angry
- LABEL_1: afraid
- LABEL_2: happy
- LABEL_3: surprised
- LABEL_4: sad

### Model Sources

<!-- Provide the basic links for the model. -->

- **Dataset:** https://huggingface.co/datasets/anilguven/turkish_tweet_emotion_dataset
- **Paper:** https://ieeexplore.ieee.org/document/9559014
- **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_tweet_emotion_analysis_with_language_models
- **Finetuned from model [optional]:** https://huggingface.co/dbmdz/distilbert-base-turkish-cased

#### Preprocessing 

You must apply removing stopwords, stemming, or lemmatization process for Turkish.

### Results

- eval_loss = 0.05249839214870008
- mcc = 0.9828118433102754
- Accuracy: %98.63

## Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

*@INPROCEEDINGS{9559014,
  author={Guven, Zekeriya Anil},
  booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)}, 
  title={Comparison of BERT Models and Machine Learning Methods for Sentiment Analysis on Turkish Tweets}, 
  year={2021},
  volume={},
  number={},
  pages={98-101},
  keywords={Computer science;Sentiment analysis;Analytical models;Social networking (online);Computational modeling;Bit error rate;Random forests;Sentiment Analysis;BERT;Machine Learning;Text Classification;Tweet Analysis.},
  doi={10.1109/UBMK52708.2021.9559014}}*


**APA:**

*Guven, Z. A. (2021, September). Comparison of BERT models and machine learning methods for sentiment analysis on Turkish tweets. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 98-101). IEEE.*