File size: 33,390 Bytes
726d623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A change in key assumptions such as the discount rate or projected
    future revenues, expenses and cash flows could materially affect the determination
    of fair values.
  sentences:
  - How many shares of common stock were sold in fiscal 2021 under GameStop Corp.'s
    at-the-market equity offering programs?
  - How does a change in key assumptions potentially affect the determination of fair
    values of assets?
  - What is the primary revenue source for Comcast's Theme Parks segment?
- source_sentence: In January 2023, we announced our intention to implement a cost
    reduction program to reduce automotive fixed costs by $2.0 billion on an annual
    run rate basis by the end of 2024. This goal includes the impact of higher expected
    depreciation and amortization expense and inflationary cost increases on fixed
    cost but excludes changes in our pension income. In addition to people costs,
    we are reducing our marketing and advertising expenses, streamlining our engineering
    expense by reducing complexity across the vehicle portfolio, adjusting the cadivers-SafieiaıcıUrbanıcık,
    prioritizing growth initiatives, and reducing our overall overhead and discretionary
    costs.
  sentences:
  - What method does AbbVie primarily use to record investments in equity securities
    with readily determinable fair values?
  - What measures is General Motors taking to reduce costs and streamline operations?
  - As of December 31, 2023, what is the total balance of acquisitions, foreign currency
    translation and other adjustments?
- source_sentence: AutoZone utilizes a computerized proprietary Point-of-Sale System
    including bar code scanning and terminals to enhance customer service by efficiently
    processing transactions and assisting in administrative tasks.
  sentences:
  - How does AutoZone's Point-of-Sale System enhance customer service?
  - What unique feature did fiscal year 2021 have compared to 2023 and 2022?
  - What was the primary source of the increase in premiums written by Berkshire Hathaway's
    Property/Casualty reinsurance in 2023?
- source_sentence: In 2023, capital expenditures for aircraft and related equipment
    by FedEx Express saw a decrease of 26% compared to 2022.
  sentences:
  - What was the increase in earnings from operations for Optum from 2022 to 2023?
  - What did the FCA require regarding the continued publication of certain LIBOR
    settings after 2021?
  - What was the percentage decrease in FedEx's aircraft and related equipment capital
    expenditures in 2023 compared to 2022?
- source_sentence: In 1983, Walmart opened its first Sam's Club, and in 1988, it opened
    its first supercenter.
  sentences:
  - When did Walmart open its first Sam's Club and supercenter?
  - Which standards and guidelines does the company use for informing its sustainability
    disclosures?
  - What accounting treatment does the Company apply to refunds issued to customers?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7028571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8371428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9185714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7028571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09185714285714283
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7028571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8371428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9185714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.81196519287814
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7777465986394556
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7809887604595412
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6985714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8642857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9242857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6985714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17285714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09242857142857142
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6985714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8642857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9242857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8104528945408784
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7743191609977326
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7771143041520369
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6942857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8271428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8585714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9085714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6942857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2757142857142857
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1717142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09085714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6942857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8271428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8585714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9085714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8026074561436641
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7686825396825395
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7726124326414546
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6885714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8157142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8571428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9071428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6885714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27190476190476187
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1714285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09071428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6885714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8157142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8571428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9071428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7972617985734928
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7622108843537415
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.765720886169324
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.66
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7985714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8357142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8828571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.66
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2661904761904762
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1671428571428571
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08828571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.66
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7985714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8357142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8828571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7715751288332002
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7360753968253966
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7400601081956545
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("anishareddyalla/bge-base-financial-matryoshka-anisha")
# Run inference
sentences = [
    "In 1983, Walmart opened its first Sam's Club, and in 1988, it opened its first supercenter.",
    "When did Walmart open its first Sam's Club and supercenter?",
    'Which standards and guidelines does the company use for informing its sustainability disclosures?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.7029    |
| cosine_accuracy@3   | 0.8371    |
| cosine_accuracy@5   | 0.8729    |
| cosine_accuracy@10  | 0.9186    |
| cosine_precision@1  | 0.7029    |
| cosine_precision@3  | 0.279     |
| cosine_precision@5  | 0.1746    |
| cosine_precision@10 | 0.0919    |
| cosine_recall@1     | 0.7029    |
| cosine_recall@3     | 0.8371    |
| cosine_recall@5     | 0.8729    |
| cosine_recall@10    | 0.9186    |
| cosine_ndcg@10      | 0.812     |
| cosine_mrr@10       | 0.7777    |
| **cosine_map@100**  | **0.781** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6986     |
| cosine_accuracy@3   | 0.8329     |
| cosine_accuracy@5   | 0.8643     |
| cosine_accuracy@10  | 0.9243     |
| cosine_precision@1  | 0.6986     |
| cosine_precision@3  | 0.2776     |
| cosine_precision@5  | 0.1729     |
| cosine_precision@10 | 0.0924     |
| cosine_recall@1     | 0.6986     |
| cosine_recall@3     | 0.8329     |
| cosine_recall@5     | 0.8643     |
| cosine_recall@10    | 0.9243     |
| cosine_ndcg@10      | 0.8105     |
| cosine_mrr@10       | 0.7743     |
| **cosine_map@100**  | **0.7771** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6943     |
| cosine_accuracy@3   | 0.8271     |
| cosine_accuracy@5   | 0.8586     |
| cosine_accuracy@10  | 0.9086     |
| cosine_precision@1  | 0.6943     |
| cosine_precision@3  | 0.2757     |
| cosine_precision@5  | 0.1717     |
| cosine_precision@10 | 0.0909     |
| cosine_recall@1     | 0.6943     |
| cosine_recall@3     | 0.8271     |
| cosine_recall@5     | 0.8586     |
| cosine_recall@10    | 0.9086     |
| cosine_ndcg@10      | 0.8026     |
| cosine_mrr@10       | 0.7687     |
| **cosine_map@100**  | **0.7726** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6886     |
| cosine_accuracy@3   | 0.8157     |
| cosine_accuracy@5   | 0.8571     |
| cosine_accuracy@10  | 0.9071     |
| cosine_precision@1  | 0.6886     |
| cosine_precision@3  | 0.2719     |
| cosine_precision@5  | 0.1714     |
| cosine_precision@10 | 0.0907     |
| cosine_recall@1     | 0.6886     |
| cosine_recall@3     | 0.8157     |
| cosine_recall@5     | 0.8571     |
| cosine_recall@10    | 0.9071     |
| cosine_ndcg@10      | 0.7973     |
| cosine_mrr@10       | 0.7622     |
| **cosine_map@100**  | **0.7657** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.66       |
| cosine_accuracy@3   | 0.7986     |
| cosine_accuracy@5   | 0.8357     |
| cosine_accuracy@10  | 0.8829     |
| cosine_precision@1  | 0.66       |
| cosine_precision@3  | 0.2662     |
| cosine_precision@5  | 0.1671     |
| cosine_precision@10 | 0.0883     |
| cosine_recall@1     | 0.66       |
| cosine_recall@3     | 0.7986     |
| cosine_recall@5     | 0.8357     |
| cosine_recall@10    | 0.8829     |
| cosine_ndcg@10      | 0.7716     |
| cosine_mrr@10       | 0.7361     |
| **cosine_map@100**  | **0.7401** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 46.43 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.76 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                                                                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The Company’s human capital management strategy is built on three fundamental focus areas: Attracting and recruiting the best talent, Developing and retaining talent, Empowering and inspiring talent.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>What strategies are outlined in the Company's human capital management?</code>                                                                                                             |
  | <code>Opinion on the Consolidated Financial Statements We have audited the accompanying consolidated balance sheets of Costco Wholesale Corporation and subsidiaries (the Company) as of September 3, 2023, and August 28, 2022, the related consolidated statements of income, comprehensive income, equity, and cash flows for the 53-week period ended September 3, 2023, and the 52-week periods ended August 28, 2022, and August 29, 2021, and the related notes (collectively, the consolidated financial statements). In our opinion, the consolidated financial statements present fairly, in all material respects, the financial position of the Company as of September 3, 2023, and August 28, 2022, and the results of its operations and its cash flows for each of the 53-week period ended September 3, 2023, and the 52-week periods ended August 28, 2022, and August 29, 2021, in conformity with U.S. generally accepted accounting principles.</code> | <code>What was the opinion of the independent registered public accounting firm on Costco Wholesale Corporation's consolidated financial statements for the year ended September 3, 2023?</code> |
  | <code>Nonperforming loans and leases are generally those that have been placed on nonaccrual status, such as when they are 90 days past due or have confirmed cases of fraud or bankruptcy. Additionally, specific types of loans like consumer real estate-secured loans are classified as nonperforming at 90 days past due unless they are fully insured, and commercial loans and leases are classified as nonperforming when past due 90 days or more unless well-secured and in the process of collection.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <code>What criteria are used to classify loans and leases as nonperforming according to the described credit policy?</code>                                                                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5488        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7540                 | 0.7565                 | 0.7660                 | 0.7176                | 0.7693                 |
| 1.6244     | 20     | 0.674         | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7622                 | 0.7715                 | 0.7781                 | 0.7352                | 0.7790                 |
| 2.4365     | 30     | 0.4592        | -                      | -                      | -                      | -                     | -                      |
| **2.9239** | **36** | **-**         | **0.7648**             | **0.7729**             | **0.7778**             | **0.7384**            | **0.7799**             |
| 3.2487     | 40     | 0.4113        | -                      | -                      | -                      | -                     | -                      |
| 3.8985     | 48     | -             | 0.7657                 | 0.7726                 | 0.7771                 | 0.7401                | 0.7810                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->