File size: 8,525 Bytes
890363e 6e46162 890363e ba9fd55 1e8d430 890363e 8eb54e3 890363e f967537 e5629bf 890363e c480c3f 890363e c480c3f 890363e c480c3f 890363e a31ab76 890363e 9a76b05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
library_name: transformers
license: apache-2.0
language:
- en
tags:
- fill-mask
- masked-lm
- long-context
- modernbert
pipeline_tag: fill-mask
inference: false
---
# ModernBERT
## Table of Contents
1. [Model Summary](#model-summary)
2. [Usage](#Usage)
3. [Evaluation](#Evaluation)
4. [Limitations](#limitations)
5. [Training](#training)
6. [License](#license)
7. [Citation](#citation)
## Model Summary
ModernBERT is a modernized bidirectional encoder-only Transformer model (BERT-style) pre-trained on 2 trillion tokens of English and code data with a native context length of up to 8,192 tokens. ModernBERT leverages recent architectural improvements such as:
- **Rotary Positional Embeddings (RoPE)** for long-context support.
- **Local-Global Alternating Attention** for efficiency on long inputs.
- **Unpadding and Flash Attention** for efficient inference.
ModernBERT’s native long context length makes it ideal for tasks that require processing long documents, such as retrieval, classification, and semantic search within large corpora. The model was trained on a large corpus of text and code, making it suitable for a wide range of downstream tasks, including code retrieval and hybrid (text + code) semantic search.
It is available in the following sizes:
- [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) - 22 layers, 149 million parameters
- [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) - 28 layers, 395 million parameters
For more information about ModernBERT, we recommend our [release blog post](https://huggingface.co/blog/modernbert) for a high-level overview, and our [arXiv pre-print](https://arxiv.org/abs/2412.13663) for in-depth information.
*ModernBERT is a collaboration between [Answer.AI](https://answer.ai), [LightOn](https://lighton.ai), and friends.*
## Usage
You can use these models directly with the `transformers` library. Until the next `transformers` release, doing so requires installing transformers from main:
```sh
pip install git+https://github.com/huggingface/transformers.git
```
Since ModernBERT is a Masked Language Model (MLM), you can use the `fill-mask` pipeline or load it via `AutoModelForMaskedLM`. To use ModernBERT for downstream tasks like classification, retrieval, or QA, fine-tune it following standard BERT fine-tuning recipes.
**⚠️ If your GPU supports it, we recommend using ModernBERT with Flash Attention 2 to reach the highest efficiency. To do so, install Flash Attention as follows, then use the model as normal:**
```bash
pip install flash-attn
```
Using `AutoModelForMaskedLM`:
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = "answerdotai/ModernBERT-base"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id)
text = "The capital of France is [MASK]."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris
```
Using a pipeline:
```python
import torch
from transformers import pipeline
from pprint import pprint
pipe = pipeline(
"fill-mask",
model="answerdotai/ModernBERT-base",
torch_dtype=torch.bfloat16,
)
input_text = "He walked to the [MASK]."
results = pipe(input_text)
pprint(results)
```
**Note:** ModernBERT does not use token type IDs, unlike some earlier BERT models. Most downstream usage is identical to standard BERT models on the Hugging Face Hub, except you can omit the `token_type_ids` parameter.
## Evaluation
We evaluate ModernBERT across a range of tasks, including natural language understanding (GLUE), general retrieval (BEIR), long-context retrieval (MLDR), and code retrieval (CodeSearchNet and StackQA).
**Key highlights:**
- On GLUE, ModernBERT-base surpasses other similarly-sized encoder models, and ModernBERT-large is second only to Deberta-v3-large.
- For general retrieval tasks, ModernBERT performs well on BEIR in both single-vector (DPR-style) and multi-vector (ColBERT-style) settings.
- Thanks to the inclusion of code data in its training mixture, ModernBERT as a backbone also achieves new state-of-the-art code retrieval results on CodeSearchNet and StackQA.
### Base Models
| Model | IR (DPR) | IR (DPR) | IR (DPR) | IR (ColBERT) | IR (ColBERT) | NLU | Code | Code |
|-------------|--------------|--------------|--------------|---------------|---------------|------|------|------|
| | BEIR | MLDR_OOD | MLDR_ID | BEIR | MLDR_OOD | GLUE | CSN | SQA |
| BERT | 38.9 | 23.9 | 32.2 | 49.0 | 28.1 | 84.7 | 41.2 | 59.5 |
| RoBERTa | 37.7 | 22.9 | 32.8 | 48.7 | 28.2 | 86.4 | 44.3 | 59.6 |
| DeBERTaV3 | 20.2 | 5.4 | 13.4 | 47.1 | 21.9 | 88.1 | 17.5 | 18.6 |
| NomicBERT | 41.0 | 26.7 | 30.3 | 49.9 | 61.3 | 84.0 | 41.6 | 61.4 |
| GTE-en-MLM | 41.4 | **34.3** |**44.4** | 48.2 | 69.3 | 85.6 | 44.9 | 71.4 |
| ModernBERT | **41.6** | 27.4 | 44.0 | **51.3** | **80.2** | **88.4** | **56.4** |**73.6**|
---
### Large Models
| Model | IR (DPR) | IR (DPR) | IR (DPR) | IR (ColBERT) | IR (ColBERT) | NLU | Code | Code |
|-------------|--------------|--------------|--------------|---------------|---------------|------|------|------|
| | BEIR | MLDR_OOD | MLDR_ID | BEIR | MLDR_OOD | GLUE | CSN | SQA |
| BERT | 38.9 | 23.3 | 31.7 | 49.5 | 28.5 | 85.2 | 41.6 | 60.8 |
| RoBERTa | 41.4 | 22.6 | 36.1 | 49.8 | 28.8 | 88.9 | 47.3 | 68.1 |
| DeBERTaV3 | 25.6 | 7.1 | 19.2 | 46.7 | 23.0 | **91.4**| 21.2 | 19.7 |
| GTE-en-MLM | 42.5 | **36.4** | **48.9** | 50.7 | 71.3 | 87.6 | 40.5 | 66.9 |
| ModernBERT | **44.0** | 34.3 | 48.6 | **52.4** | **80.4** | 90.4 |**59.5** |**83.9**|
*Table 1: Results for all models across an overview of all tasks. CSN refers to CodeSearchNet and SQA to StackQA. MLDRID refers to in-domain (fine-tuned on the training set) evaluation, and MLDR_OOD to out-of-domain.*
ModernBERT’s strong results, coupled with its efficient runtime on long-context inputs, demonstrate that encoder-only models can be significantly improved through modern architectural choices and extensive pretraining on diversified data sources.
## Limitations
ModernBERT’s training data is primarily English and code, so performance may be lower for other languages. While it can handle long sequences efficiently, using the full 8,192 tokens window may be slower than short-context inference. Like any large language model, ModernBERT may produce representations that reflect biases present in its training data. Verify critical or sensitive outputs before relying on them.
## Training
- Architecture: Encoder-only, Pre-Norm Transformer with GeGLU activations.
- Sequence Length: Pre-trained up to 1,024 tokens, then extended to 8,192 tokens.
- Data: 2 trillion tokens of English text and code.
- Optimizer: StableAdamW with trapezoidal LR scheduling and 1-sqrt decay.
- Hardware: Trained on 8x H100 GPUs.
See the paper for more details.
## License
We release the ModernBERT model architectures, model weights, training codebase under the Apache 2.0 license.
## Citation
If you use ModernBERT in your work, please cite:
```
@misc{modernbert,
title={Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference},
author={Benjamin Warner and Antoine Chaffin and Benjamin Clavié and Orion Weller and Oskar Hallström and Said Taghadouini and Alexis Gallagher and Raja Biswas and Faisal Ladhak and Tom Aarsen and Nathan Cooper and Griffin Adams and Jeremy Howard and Iacopo Poli},
year={2024},
eprint={2412.13663},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13663},
}
``` |