File size: 6,206 Bytes
24559ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license: apache-2.0
datasets:
- Doctor-Shotgun/c2_deduped_16k_llama3_tok_deanon
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
language:
- en
base_model:
- Qwen/Qwen2.5-72B-Instruct
library_name: transformers
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/trlkbv0jv_0HImUESrt5C.png)
This is an experimental model designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct).

## Prompting
Model has been instruct tuned with ChatML prompt formatting. A typical input would look like this:

```
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```

## SillyTavern templates

Below are Instruct and Context templates for use within SillyTavern.

<details><summary>context template</summary>
  
```yaml
{
    "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n",
    "example_separator": "",
    "chat_start": "",
    "use_stop_strings": false,
    "allow_jailbreak": false,
    "always_force_name2": true,
    "trim_sentences": false,
    "include_newline": false,
    "single_line": false,
    "name": "Magnum ChatML"
}
```

</details><br>
<details><summary>instruct template</summary>
  
```yaml
{
    "system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.",
    "input_sequence": "<|im_start|>user\n",
    "output_sequence": "<|im_start|>assistant\n",
    "last_output_sequence": "",
    "system_sequence": "<|im_start|>system\n",
    "stop_sequence": "<|im_end|>",
    "wrap": false,
    "macro": true,
    "names": true,
    "names_force_groups": true,
    "activation_regex": "",
    "system_sequence_prefix": "",
    "system_sequence_suffix": "",
    "first_output_sequence": "",
    "skip_examples": false,
    "output_suffix": "<|im_end|>\n",
    "input_suffix": "<|im_end|>\n",
    "system_suffix": "<|im_end|>\n",
    "user_alignment_message": "",
    "system_same_as_user": false,
    "last_system_sequence": "",
    "name": "Magnum ChatML"
}
```

</details><br>

## Credits

Datasets used:
- [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
- [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827)
- [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2)


## Axolotl config

<details><summary>See axolotl config</summary>

```yaml
base_model: /workspace/data/models/Qwen2.5-72B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/nopm_claude_writing_fixed
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo_opus_misc_240827
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo_misc_part2
    type: sharegpt
    conversation: chatml
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-72b-data
val_set_size: 0.0
output_dir: /workspace/data/72b-fft-out

sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: 72b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: alter-attempt-01
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000004

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:

```
</details><br>

## Training
The model was trained for 2 epochs on 8x [AMD Instinct™ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for full-parameter fine-tuning of the model.

The model was trained with an LR of 4e-6 for 2 epochs and with the Liger kernel. 

Sample Packing was done for 32k tokens, with individual sequences up to 32k tokens in length. 

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Safety
...