antoinelouis
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,156 +1,145 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
language: fr
|
4 |
-
license:
|
5 |
datasets:
|
6 |
- unicamp-dl/mmarco
|
7 |
metrics:
|
8 |
- recall
|
9 |
-
|
10 |
tags:
|
11 |
-
- sentence-transformers
|
12 |
- feature-extraction
|
13 |
- sentence-similarity
|
14 |
-
-
|
15 |
-
|
16 |
---
|
17 |
|
18 |
-
|
19 |
|
20 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset.
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
pip install -U sentence-transformers
|
31 |
-
```
|
32 |
|
33 |
-
Then you can use the model like this:
|
34 |
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
-
|
|
|
|
|
38 |
|
39 |
model = SentenceTransformer('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
```
|
43 |
|
|
|
|
|
|
|
44 |
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
```python
|
51 |
-
from transformers import AutoTokenizer, AutoModel
|
52 |
import torch
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
56 |
def mean_pooling(model_output, attention_mask):
|
|
|
57 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
58 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
59 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
# Load model from HuggingFace Hub
|
66 |
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
67 |
model = AutoModel.from_pretrained('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# Compute token embeddings
|
73 |
with torch.no_grad():
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
```
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
## Evaluation
|
86 |
***
|
87 |
|
|
|
88 |
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
94 |
-
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
| 3 | [biencoder-sentence-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-sentence-camembert-base-mmarcoFR) | 27.63 | 32.7 | 27.01 | 50.1 | 76.85 | 88.73 |
|
99 |
-
| 4 | [biencoder-distilcamembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distilcamembert-base-mmarcoFR) | 26.8 | 31.87 | 26.23 | 49.2 | 76.44 | 87.87 |
|
100 |
-
| 5 | [biencoder-mpnet-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mpnet-base-mmarcoFR) | 27.2 | 32.22 | 26.63 | 49.41 | 75.71 | 86.88 |
|
101 |
-
| 6 | [biencoder-multi-qa-distilbert-cos-v1-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-multi-qa-distilbert-cos-v1-mmarcoFR) | 26.36 | 31.26 | 25.82 | 47.93 | 75.42 | 86.78 |
|
102 |
-
| 7 | [biencoder-bert-base-uncased-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-base-uncased-mmarcoFR) | 26.3 | 31.14 | 25.74 | 47.67 | 74.57 | 86.33 |
|
103 |
-
| 8 | [biencoder-msmarco-distilbert-cos-v5-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-msmarco-distilbert-cos-v5-mmarcoFR) | 25.75 | 30.63 | 25.24 | 47.22 | 73.96 | 85.64 |
|
104 |
-
| 9 | [biencoder-all-distilroberta-v1-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-all-distilroberta-v1-mmarcoFR) | 26.17 | 30.91 | 25.67 | 47.06 | 73.5 | 85.69 |
|
105 |
-
| 10 | [biencoder-all-MiniLM-L6-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-all-MiniLM-L6-v2-mmarcoFR) | 25.49 | 30.39 | 24.99 | 47.1 | 73.48 | 86.09 |
|
106 |
-
| 11 | [biencoder-distilbert-base-uncased-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distilbert-base-uncased-mmarcoFR) | 25.18 | 29.83 | 24.64 | 45.77 | 73.16 | 85.13 |
|
107 |
-
| 12 | [biencoder-msmarco-MiniLM-L12-cos-v5-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-msmarco-MiniLM-L12-cos-v5-mmarcoFR) | 26.22 | 30.99 | 25.69 | 47.29 | 73.09 | 84.95 |
|
108 |
-
| 13 | [biencoder-roberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-roberta-base-mmarcoFR) | 25.94 | 30.72 | 25.43 | 46.98 | 73.07 | 84.76 |
|
109 |
-
| 14 | [biencoder-distiluse-base-multilingual-cased-v1-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distiluse-base-multilingual-cased-v1-mmarcoFR) | 24.57 | 29.08 | 24.04 | 44.51 | 72.54 | 85.13 |
|
110 |
-
| 15 | [biencoder-multi-qa-MiniLM-L6-cos-v1-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-multi-qa-MiniLM-L6-cos-v1-mmarcoFR) | 24.72 | 29.58 | 24.25 | 46.05 | 72.19 | 84.6 |
|
111 |
-
| 16 | [biencoder-MiniLM-L12-H384-uncased-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-MiniLM-L12-H384-uncased-mmarcoFR) | 25.43 | 30.1 | 24.88 | 46.13 | 72.16 | 83.84 |
|
112 |
-
| 17 | [biencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L12-H384-distilled-from-XLMR-Large-mmarcoFR) | 24.74 | 29.41 | 24.23 | 45.4 | 71.52 | 84.42 |
|
113 |
-
| 18 | [biencoder-electra-base-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-discriminator-mmarcoFR) | 24.77 | 29.37 | 24.21 | 45.2 | 70.84 | 83.25 |
|
114 |
-
| 19 | [biencoder-bert-medium-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-medium-mmarcoFR) | 23.86 | 28.56 | 23.39 | 44.47 | 70.57 | 83.58 |
|
115 |
-
| 20 | [biencoder-msmarco-MiniLM-L6-cos-v5-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-msmarco-MiniLM-L6-cos-v5-mmarcoFR) | 24.39 | 28.96 | 23.91 | 44.58 | 70.36 | 82.88 |
|
116 |
-
| 21 | [biencoder-distilroberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distilroberta-base-mmarcoFR) | 23.94 | 28.44 | 23.46 | 43.77 | 70.08 | 82.86 |
|
117 |
-
| 22 | [biencoder-camemberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camemberta-base-mmarcoFR) | 24.78 | 29.24 | 24.23 | 44.58 | 69.59 | 82.18 |
|
118 |
-
| 23 | [biencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-europeana-cased-discriminator-mmarcoFR) | 23.38 | 27.97 | 22.91 | 43.5 | 68.96 | 81.61 |
|
119 |
-
| 24 | [biencoder-bert-small-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-small-mmarcoFR) | 22.4 | 26.84 | 21.95 | 41.96 | 68.88 | 82.14 |
|
120 |
-
| 25 | [biencoder-mMiniLM-L6-v2-mmarcoFR-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLM-L6-v2-mmarcoFR-v2-mmarcoFR) | 22.87 | 27.26 | 22.37 | 42.3 | 68.78 | 81.39 |
|
121 |
-
| 26 | [biencoder-MiniLM-L6-H384-uncased-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-MiniLM-L6-H384-uncased-mmarcoFR) | 22.86 | 27.34 | 22.41 | 42.62 | 68.4 | 81.54 |
|
122 |
-
| 27 | [biencoder-deberta-v3-small-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-deberta-v3-small-mmarcoFR) | 22.44 | 26.84 | 21.97 | 41.84 | 68.17 | 80.9 |
|
123 |
-
| 28 | [biencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L6-H384-distilled-from-XLMR-Large-mmarcoFR) | 22.29 | 26.57 | 21.8 | 41.25 | 66.78 | 79.83 |
|
124 |
-
| 29 | [biencoder-bert-mini-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-mini-mmarcoFR) | 20.06 | 24.09 | 19.66 | 37.78 | 64.27 | 77.39 |
|
125 |
-
| 30 | [biencoder-electra-small-discriminator-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-small-discriminator-mmarcoFR) | 20.32 | 24.36 | 19.9 | 38.16 | 63.98 | 77.23 |
|
126 |
-
| 31 | [biencoder-deberta-v3-xsmall-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-deberta-v3-xsmall-mmarcoFR) | 17.7 | 21.29 | 17.31 | 33.59 | 58.76 | 73.45 |
|
127 |
-
| 32 | [biencoder-bert-tiny-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-tiny-mmarcoFR) | 14.94 | 18.22 | 14.59 | 29.46 | 51.94 | 66.3 |
|
128 |
-
| 33 | [biencoder-t5-small-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-t5-small-mmarcoFR) | 12.44 | 15.1 | 12.14 | 24.28 | 47.82 | 63.37 |
|
129 |
-
| 34 | [biencoder-bert-small-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-bert-small-mmarcoFR) | 0.22 | 0.28 | 0.21 | 0.5 | 1.25 | 2.34 |
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
## Training
|
134 |
***
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
We used the [output/-/camembert-L4](https://huggingface.co/output/-/camembert-L4) model and fine-tuned it on a 500K sentence pairs dataset in French. We used a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. Formally, we compute the cos similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss with a temperature of 0.05 by comparing with true pairs.
|
139 |
-
|
140 |
-
#### Hyperparameters
|
141 |
-
|
142 |
-
We trained the model on a single Tesla V100 GPU with 32GBs of memory during 40 epochs (i.e., 17.4k steps) using a batch size of 1152. We used the AdamW optimizer with an initial learning rate of 2e-05, weight decay of 0.01, learning rate warmup over the first 1736 steps, and linear decay of the learning rate. The sequence length was limited to 128 tokens.
|
143 |
|
144 |
#### Data
|
145 |
|
146 |
-
We
|
147 |
-
|
148 |
-
|
149 |
-
- a development set of ~101k queries;
|
150 |
-
- a smaller dev set of 6,980 queries (which is actually used for evaluation in most published works).
|
151 |
-
Link: [https://ir-datasets.com/mmarco.html#mmarco/v2/fr/](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/)
|
152 |
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
## Citation
|
156 |
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
language: fr
|
4 |
+
license: mit
|
5 |
datasets:
|
6 |
- unicamp-dl/mmarco
|
7 |
metrics:
|
8 |
- recall
|
|
|
9 |
tags:
|
|
|
10 |
- feature-extraction
|
11 |
- sentence-similarity
|
12 |
+
library_name: sentence-transformers
|
|
|
13 |
---
|
14 |
|
15 |
+
<h1 align="center">biencoder-camembert-L4-mmarcoFR</h1>
|
16 |
|
|
|
17 |
|
18 |
+
<h4 align="center">
|
19 |
+
<p>
|
20 |
+
<a href=#usage>🛠️ Usage</a> |
|
21 |
+
<a href="#evaluation">📊 Evaluation</a> |
|
22 |
+
<a href="#train">🤖 Training</a> |
|
23 |
+
<a href="#citation">🔗 Citation</a> |
|
24 |
+
<p>
|
25 |
+
</h4>
|
26 |
+
|
27 |
+
This is a [sentence-transformers](https://www.SBERT.net) model. It maps questions and paragraphs 768-dimensional dense vectors and should be used for semantic search.
|
28 |
+
The model uses an [CamemBERT-L4](https://huggingface.co/antoinelouis/camembert-L4) backbone, which is a pruned version of the pre-trained [CamemBERT](https://huggingface.co/camembert-base)
|
29 |
+
checkpoint with 51% less parameters, obtained by [dropping the top-layers](https://doi.org/10.48550/arXiv.2004.03844) from the original model.
|
30 |
+
The model was trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) retrieval dataset.
|
31 |
|
32 |
+
## Usage
|
33 |
|
34 |
+
Here are some examples for using this model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).
|
35 |
|
36 |
+
#### Using Sentence-Transformers
|
|
|
|
|
37 |
|
38 |
+
Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:
|
39 |
|
40 |
```python
|
41 |
from sentence_transformers import SentenceTransformer
|
42 |
+
|
43 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
44 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
45 |
|
46 |
model = SentenceTransformer('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
47 |
+
|
48 |
+
q_embeddings = model.encode(queries, normalize_embeddings=True)
|
49 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
50 |
+
|
51 |
+
similarity = q_embeddings @ p_embeddings.T
|
52 |
+
print(similarity)
|
53 |
```
|
54 |
|
55 |
+
#### Using FlagEmbedding
|
56 |
+
|
57 |
+
Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:
|
58 |
|
59 |
+
```python
|
60 |
+
from FlagEmbedding import FlagModel
|
61 |
|
62 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
63 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
64 |
|
65 |
+
model = FlagModel('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
66 |
+
|
67 |
+
q_embeddings = model.encode(queries, normalize_embeddings=True)
|
68 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
69 |
+
|
70 |
+
similarity = q_embeddings @ p_embeddings.T
|
71 |
+
print(similarity)
|
72 |
+
```
|
73 |
+
|
74 |
+
#### Using Transformers
|
75 |
+
|
76 |
+
Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
|
77 |
|
78 |
```python
|
|
|
79 |
import torch
|
80 |
+
from torch.nn.functional import normalize
|
81 |
+
from transformers import AutoTokenizer, AutoModel
|
82 |
|
|
|
|
|
83 |
def mean_pooling(model_output, attention_mask):
|
84 |
+
""" Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
|
85 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
86 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
87 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
88 |
|
89 |
|
90 |
+
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
|
91 |
+
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
|
92 |
|
|
|
93 |
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
94 |
model = AutoModel.from_pretrained('antoinelouis/biencoder-camembert-L4-mmarcoFR')
|
95 |
|
96 |
+
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
|
97 |
+
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
|
98 |
with torch.no_grad():
|
99 |
+
q_output = model(**encoded_queries)
|
100 |
+
p_output = model(**encoded_passages)
|
101 |
+
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
|
102 |
+
q_embedddings = normalize(q_embeddings, p=2, dim=1)
|
103 |
+
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
|
104 |
+
p_embedddings = normalize(p_embeddings, p=2, dim=1)
|
105 |
+
|
106 |
+
similarity = q_embeddings @ p_embeddings.T
|
107 |
+
print(similarity)
|
108 |
```
|
109 |
|
|
|
|
|
|
|
110 |
***
|
111 |
|
112 |
+
## Evaluation
|
113 |
|
114 |
+
We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other CamemBERT-based biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
|
115 |
|
116 |
+
| | model | Vocab. | #Param. | Size | R@500 | R@100(↑) | R@10 | MRR@10 | NDCG@10 | MAP@10 |
|
117 |
+
|---:|:-------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|-------:|---------:|-------:|-------:|--------:|-------:|
|
118 |
+
| 1 | [biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 🇫🇷 | 111M | 445MB | 89.1 | 77.8 | 51.5 | 28.5 | 33.7 | 27.9 |
|
119 |
+
| 2 | [biencoder-camembert-L10-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L10-mmarcoFR) | 🇫🇷 | 96M | 386MB | 87.8 | 76.7 | 49.5 | 27.5 | 32.5 | 27.0 |
|
120 |
+
| 3 | [biencoder-camembert-L8-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L8-mmarcoFR) | 🇫🇷 | 82M | 329MB | 87.4 | 75.9 | 48.9 | 26.7 | 31.8 | 26.2 |
|
121 |
+
| 4 | [biencoder-camembert-L6-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L6-mmarcoFR) | 🇫🇷 | 68M | 272MB | 86.7 | 74.9 | 46.7 | 25.7 | 30.4 | 25.1 |
|
122 |
+
| 5 | **biencoder-camembert-L4-mmarcoFR** | 🇫🇷 | 54M | 216MB | 85.4 | 72.1 | 44.2 | 23.7 | 28.3 | 23.2 |
|
123 |
+
| 6 | [biencoder-camembert-L2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L2-mmarcoFR) | 🇫🇷 | 40M | 159MB | 81.0 | 66.3 | 38.5 | 20.1 | 24.3 | 19.7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
125 |
***
|
126 |
|
127 |
+
## Training
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
#### Data
|
130 |
|
131 |
+
We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO
|
132 |
+
that contains 8.8M passages and 539K training queries. We do not employ the BM25 negatives provided by the official dataset but instead sample harder negatives mined
|
133 |
+
from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset.
|
|
|
|
|
|
|
134 |
|
135 |
+
#### Implementation
|
136 |
|
137 |
+
The model is initialized from the [camembert-L4](https://huggingface.co/antoinelouis/camembert-L4) checkpoint and optimized via the cross-entropy loss
|
138 |
+
(as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 17.4k steps (or 40 epochs)
|
139 |
+
using the AdamW optimizer with a batch size of 1152, a peak learning rate of 2e-5 with warm up along the first 1736 steps and linear scheduling.
|
140 |
+
We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
|
141 |
+
|
142 |
+
***
|
143 |
|
144 |
## Citation
|
145 |
|