antoinelouis commited on
Commit
44c68f3
·
verified ·
1 Parent(s): 2c37eac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -27
README.md CHANGED
@@ -44,8 +44,9 @@ model-index:
44
 
45
  # biencoder-camembert-L4-mmarcoFR
46
 
47
- This is a lightweight dense single-vector bi-encoder model for French. It maps questions and paragraphs 768-dimensional dense vectors and should be used for semantic search.
48
- The model uses an [CamemBERT-L4](https://huggingface.co/antoinelouis/camembert-L4) backbone, which is a pruned version of the pre-trained [CamemBERT](https://huggingface.co/camembert-base)
 
49
  checkpoint with 51% less parameters, obtained by [dropping the top-layers](https://doi.org/10.48550/arXiv.2004.03844) from the original model.
50
 
51
  ## Usage
@@ -126,22 +127,11 @@ similarity = q_embeddings @ p_embeddings.T
126
  print(similarity)
127
  ```
128
 
129
- ***
130
-
131
  ## Evaluation
132
 
133
- We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other CamemBERT-based biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
134
-
135
- | | model | #Param. | Size | R@500 | R@100(↑) | R@10 | MRR@10 | NDCG@10 | MAP@10 |
136
- |---:|:-------------------------------------------------------------------------------------------------------------|--------:|------:|-------:|---------:|-------:|-------:|--------:|-------:|
137
- | 1 | [biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 111M | 445MB | 89.1 | 77.8 | 51.5 | 28.5 | 33.7 | 27.9 |
138
- | 2 | [biencoder-camembert-L10-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L10-mmarcoFR) | 96M | 386MB | 87.8 | 76.7 | 49.5 | 27.5 | 32.5 | 27.0 |
139
- | 3 | [biencoder-camembert-L8-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L8-mmarcoFR) | 82M | 329MB | 87.4 | 75.9 | 48.9 | 26.7 | 31.8 | 26.2 |
140
- | 4 | [biencoder-camembert-L6-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L6-mmarcoFR) | 68M | 272MB | 86.7 | 74.9 | 46.7 | 25.7 | 30.4 | 25.1 |
141
- | 5 | **biencoder-camembert-L4-mmarcoFR** | 54M | 216MB | 85.4 | 72.1 | 44.2 | 23.7 | 28.3 | 23.2 |
142
- | 6 | [biencoder-camembert-L2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L2-mmarcoFR) | 40M | 159MB | 81.0 | 66.3 | 38.5 | 20.1 | 24.3 | 19.7 |
143
-
144
- ***
145
 
146
  ## Training
147
 
@@ -158,17 +148,14 @@ The model is initialized from the [camembert-L4](https://huggingface.co/antoinel
158
  using the AdamW optimizer with a batch size of 1152, a peak learning rate of 2e-5 with warm up along the first 1736 steps and linear scheduling.
159
  We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
160
 
161
- ***
162
-
163
  ## Citation
164
 
165
  ```bibtex
166
- @online{louis2023,
167
- author = 'Antoine Louis',
168
- title = 'biencoder-camembert-L4-mmarcoFR: A Biencoder Model Trained on French mMARCO',
169
- publisher = 'Hugging Face',
170
- month = 'may',
171
- year = '2023',
172
- url = 'https://huggingface.co/antoinelouis/biencoder-camembert-L4-mmarcoFR',
173
- }
174
- ```
 
44
 
45
  # biencoder-camembert-L4-mmarcoFR
46
 
47
+ This is a lightweight dense single-vector bi-encoder model for **French** that can be used for semantic search.
48
+ The model maps queries and passages to 768-dimensional dense vectors which are used to compute relevance through cosine similarity.
49
+ It uses a [CamemBERT-L4](https://huggingface.co/antoinelouis/camembert-L4) backbone, which is a pruned version of the pre-trained [CamemBERT](https://huggingface.co/camembert-base)
50
  checkpoint with 51% less parameters, obtained by [dropping the top-layers](https://doi.org/10.48550/arXiv.2004.03844) from the original model.
51
 
52
  ## Usage
 
127
  print(similarity)
128
  ```
129
 
 
 
130
  ## Evaluation
131
 
132
+ The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of
133
+ 8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
134
+ To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co/spaces/antoinelouis/decouvrir) leaderboard.
 
 
 
 
 
 
 
 
 
135
 
136
  ## Training
137
 
 
148
  using the AdamW optimizer with a batch size of 1152, a peak learning rate of 2e-5 with warm up along the first 1736 steps and linear scheduling.
149
  We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
150
 
 
 
151
  ## Citation
152
 
153
  ```bibtex
154
+ @online{louis2024decouvrir,
155
+ author = 'Antoine Louis',
156
+ title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
157
+ publisher = 'Hugging Face',
158
+ month = 'mar',
159
+ year = '2024',
160
+ url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
161
+ }