File size: 8,232 Bytes
8e7ea61 58b677a 8e7ea61 4c79560 58b677a 4c79560 8e7ea61 4c79560 8e7ea61 4c79560 58b677a 4c79560 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 60c336e 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 58b677a 8e7ea61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
pipeline_tag: sentence-similarity
language: fr
license: mit
datasets:
- unicamp-dl/mmarco
metrics:
- recall
tags:
- passage-retrieval
library_name: sentence-transformers
base_model: antoinelouis/camembert-L6
model-index:
- name: biencoder-camembert-L6-mmarcoFR
results:
- task:
type: sentence-similarity
name: Passage Retrieval
dataset:
type: unicamp-dl/mmarco
name: mMARCO-fr
config: french
split: validation
metrics:
- type: recall_at_500
name: Recall@500
value: 86.7
- type: recall_at_100
name: Recall@100
value: 74.9
- type: recall_at_10
name: Recall@10
value: 46.7
- type: mrr_at_10
name: MRR@10
value: 25.7
- type: ndcg_at_10
name: nDCG@10
value: 30.4
- type: map_at_10
name: MAP@10
value: 25.1
---
# biencoder-camembert-L6-mmarcoFR
This is a lightweight dense single-vector bi-encoder model for French. It maps questions and paragraphs 768-dimensional dense vectors and should be used for semantic search.
The model uses an [CamemBERT-L6](https://huggingface.co/antoinelouis/camembert-L6) backbone, which is a pruned version of the pre-trained [CamemBERT](https://huggingface.co/camembert-base)
checkpoint with 38% less parameters, obtained by [dropping the top-layers](https://doi.org/10.48550/arXiv.2004.03844) from the original model.
## Usage
Here are some examples for using this model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using Sentence-Transformers
Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
model = SentenceTransformer('antoinelouis/biencoder-camembert-L6-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
```
#### Using FlagEmbedding
Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:
```python
from FlagEmbedding import FlagModel
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
model = FlagModel('antoinelouis/biencoder-camembert-L6-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
```
#### Using Transformers
Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
```python
import torch
from torch.nn.functional import normalize
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
""" Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-camembert-L6-mmarcoFR')
model = AutoModel.from_pretrained('antoinelouis/biencoder-camembert-L6-mmarcoFR')
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
q_output = model(**encoded_queries)
p_output = model(**encoded_passages)
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
q_embedddings = normalize(q_embeddings, p=2, dim=1)
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
p_embedddings = normalize(p_embeddings, p=2, dim=1)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
```
***
## Evaluation
We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other CamemBERT-based biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
| | model | #Param. | Size | R@500 | R@100(↑) | R@10 | MRR@10 | NDCG@10 | MAP@10 |
|---:|:-------------------------------------------------------------------------------------------------------------|--------:|------:|-------:|---------:|-------:|-------:|--------:|-------:|
| 1 | [biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 111M | 445MB | 89.1 | 77.8 | 51.5 | 28.5 | 33.7 | 27.9 |
| 2 | [biencoder-camembert-L10-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L10-mmarcoFR) | 96M | 386MB | 87.8 | 76.7 | 49.5 | 27.5 | 32.5 | 27.0 |
| 3 | [biencoder-camembert-L8-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L8-mmarcoFR) | 82M | 329MB | 87.4 | 75.9 | 48.9 | 26.7 | 31.8 | 26.2 |
| 4 | **biencoder-camembert-L6-mmarcoFR** | 68M | 272MB | 86.7 | 74.9 | 46.7 | 25.7 | 30.4 | 25.1 |
| 5 | [biencoder-camembert-L4-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L4-mmarcoFR) | 54M | 216MB | 85.4 | 72.1 | 44.2 | 23.7 | 28.3 | 23.2 |
| 6 | [biencoder-camembert-L2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-L2-mmarcoFR) | 40M | 159MB | 81.0 | 66.3 | 38.5 | 20.1 | 24.3 | 19.7 |
***
## Training
#### Data
We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO
that contains 8.8M passages and 539K training queries. We do not employ the BM25 negatives provided by the official dataset but instead sample harder negatives mined
from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset.
#### Implementation
The model is initialized from the [camembert-L6](https://huggingface.co/antoinelouis/camembert-L6) checkpoint and optimized via the cross-entropy loss
(as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 26k steps (or 40 epochs)
using the AdamW optimizer with a batch size of 768, a peak learning rate of 2e-5 with warm up along the first 2600 steps and linear scheduling.
We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
***
## Citation
```bibtex
@online{louis2023,
author = 'Antoine Louis',
title = 'biencoder-camembert-L6-mmarcoFR: A Biencoder Model Trained on French mMARCO',
publisher = 'Hugging Face',
month = 'may',
year = '2023',
url = 'https://huggingface.co/antoinelouis/biencoder-camembert-L6-mmarcoFR',
}
``` |