File size: 7,977 Bytes
40bc5b5
 
 
 
 
 
 
 
 
 
 
420a6a5
40bc5b5
 
 
 
f4b0d18
40bc5b5
 
 
945fd75
40bc5b5
945fd75
40bc5b5
945fd75
40bc5b5
 
 
945fd75
 
 
40bc5b5
 
945fd75
 
 
 
 
40bc5b5
 
945fd75
40bc5b5
945fd75
40bc5b5
 
945fd75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40bc5b5
945fd75
 
 
40bc5b5
 
945fd75
40bc5b5
 
 
 
 
945fd75
 
40bc5b5
 
 
 
945fd75
 
40bc5b5
945fd75
 
 
 
 
 
 
 
 
40bc5b5
 
 
 
945fd75
 
 
45ee027
389c149
 
 
 
 
 
 
 
 
 
40bc5b5
 
 
945fd75
40bc5b5
945fd75
40bc5b5
f4b0d18
40bc5b5
945fd75
40bc5b5
945fd75
40bc5b5
945fd75
40bc5b5
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
pipeline_tag: sentence-similarity
language: fr
license: apache-2.0
datasets:
- unicamp-dl/mmarco
metrics:
- recall
tags:
- feature-extraction
- sentence-similarity
library_name: sentence-transformers
---

# biencoder-camembert-base-mmarcoFR

This is a dense single-vector bi-encoder model. It maps sentences & paragraphs to a 768 dimensional dense vector space and should be used for semantic search. The model was trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) retrieval dataset.

## Usage

Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).

#### Using Sentence-Transformers

Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:

```python
from sentence_transformers import SentenceTransformer

queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]

model = SentenceTransformer('antoinelouis/biencoder-camembert-base-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

#### Using FlagEmbedding

Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:

```python
from FlagEmbedding import FlagModel

queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]

model = FlagModel('antoinelouis/biencoder-camembert-base-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

#### Using Transformers

Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:

```python
from transformers import AutoTokenizer, AutoModel
from torch.nn.functional import normalize

def mean_pooling(model_output, attention_mask):
    """ Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]

tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-camembert-base-mmarcoFR')
model = AutoModel.from_pretrained('antoinelouis/biencoder-camembert-base-mmarcoFR')

q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
    q_output = model(**encoded_queries)
    p_output = model(**encoded_passages)
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
q_embedddings = normalize(q_embeddings, p=2, dim=1)
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
p_embedddings = normalize(p_embeddings, p=2, dim=1)

similarity = q_embeddings @ p_embeddings.T
print(similarity)
```

***

## Evaluation

We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).

|    | model                                                                                                                   | Vocab. | #Param. |  Size |   MRR@10 |   NDCG@10 |   MAP@10 |   R@10 |   R@100(↑) |   R@500 |
|---:|:------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|---------:|----------:|---------:|-------:|-----------:|--------:|
|  1 | **biencoder-camembert-base-mmarcoFR**                                                                                   |     🇫🇷 |    110M | 443MB |    28.53 |     33.72 |    27.93 |  51.46 |      77.82 |   89.13 |
|  2 | [biencoder-mpnet-base-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mpnet-base-all-v2-mmarcoFR)        |     🇬🇧 |    109M | 438MB |    28.04 |     33.28 |    27.50 |  51.07 |      77.68 |   88.67 |
|  3 | [biencoder-distilcamembert-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-distilcamembert-mmarcoFR)            |     🇫🇷 |     68M | 272MB |    26.80 |     31.87 |    26.23 |  49.20 |      76.44 |   87.87 |
|  4 | [biencoder-MiniLM-L6-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-MiniLM-L6-all-v2-mmarcoFR)          |     🇬🇧 |     23M |  91MB |    25.49 |     30.39 |    24.99 |  47.10 |      73.48 |   86.09 |
|  5 | [biencoder-mMiniLMv2-L12-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L12-mmarcoFR)                | 🇫🇷,99+ |    117M | 471MB |    24.74 |     29.41 |    24.23 |  45.40 |      71.52 |   84.42 |
|  6 | [biencoder-camemberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camemberta-base-mmarcoFR)            |     🇫🇷 |    112M | 447MB |    24.78 |     29.24 |    24.23 |  44.58 |      69.59 |   82.18 |
|  7 | [biencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-mmarcoFR)    |     🇫🇷 |    110M | 440MB |    23.38 |     27.97 |    22.91 |  43.50 |      68.96 |   81.61 |
|  8 | [biencoder-mMiniLMv2-L6-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR)                  | 🇫🇷,99+ |    107M | 428MB |    22.29 |     26.57 |    21.80 |  41.25 |      66.78 |   79.83 |

***

## Training

#### Data

We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO that contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset.

#### Implementation

The model is initialized from the [camembert-base](https://huggingface.co/camembert-base) checkpoint and optimized via the cross-entropy loss (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.

***

## Citation

```bibtex
@online{louis2023,
   author    = 'Antoine Louis',
   title     = 'biencoder-camembert-base-mmarcoFR: A Biencoder Model Trained on French mMARCO',
   publisher = 'Hugging Face',
   month     = 'may',
   year      = '2023',
   url       = 'https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR',
}
```