antoinelouis commited on
Commit
f44fd5f
·
verified ·
1 Parent(s): 1ecfd46

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -26
README.md CHANGED
@@ -45,7 +45,7 @@ model-index:
45
 
46
  # biencoder-distilcamembert-mmarcoFR
47
 
48
- This is a dense single-vector bi-encoder model. It maps sentences and paragraphs to a 768 dimensional dense vector space and should be used for semantic search. The model was trained on the **French** portion of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) retrieval dataset.
49
 
50
  ## Usage
51
 
@@ -122,24 +122,11 @@ similarity = q_embeddings @ p_embeddings.T
122
  print(similarity)
123
  ```
124
 
125
- ***
126
-
127
  ## Evaluation
128
 
129
- We evaluate the model on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of 8.8M candidate passages. Below, we compare the model performance with other biencoder models fine-tuned on the same dataset. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
130
-
131
- | | model | Vocab. | #Param. | Size | MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100() | R@500 |
132
- |---:|:------------------------------------------------------------------------------------------------------------------------|:-------|--------:|------:|---------:|----------:|---------:|-------:|-----------:|--------:|
133
- | 1 | [biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 🇫🇷 | 110M | 443MB | 28.53 | 33.72 | 27.93 | 51.46 | 77.82 | 89.13 |
134
- | 2 | [biencoder-mpnet-base-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mpnet-base-all-v2-mmarcoFR) | 🇬🇧 | 109M | 438MB | 28.04 | 33.28 | 27.50 | 51.07 | 77.68 | 88.67 |
135
- | 3 | **biencoder-distilcamembert-mmarcoFR** | 🇫🇷 | 68M | 272MB | 26.80 | 31.87 | 26.23 | 49.20 | 76.44 | 87.87 |
136
- | 4 | [biencoder-MiniLM-L6-all-v2-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-MiniLM-L6-all-v2-mmarcoFR) | 🇬🇧 | 23M | 91MB | 25.49 | 30.39 | 24.99 | 47.10 | 73.48 | 86.09 |
137
- | 5 | [biencoder-mMiniLMv2-L12-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L12-mmarcoFR) | 🇫🇷,99+ | 117M | 471MB | 24.74 | 29.41 | 24.23 | 45.40 | 71.52 | 84.42 |
138
- | 6 | [biencoder-camemberta-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camemberta-base-mmarcoFR) | 🇫🇷 | 112M | 447MB | 24.78 | 29.24 | 24.23 | 44.58 | 69.59 | 82.18 |
139
- | 7 | [biencoder-electra-base-french-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-electra-base-french-mmarcoFR) | 🇫🇷 | 110M | 440MB | 23.38 | 27.97 | 22.91 | 43.50 | 68.96 | 81.61 |
140
- | 8 | [biencoder-mMiniLMv2-L6-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR) | 🇫🇷,99+ | 107M | 428MB | 22.29 | 26.57 | 21.80 | 41.25 | 66.78 | 79.83 |
141
-
142
- ***
143
 
144
  ## Training
145
 
@@ -151,17 +138,15 @@ We use the French training samples from the [mMARCO](https://huggingface.co/data
151
 
152
  The model is initialized from the [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) checkpoint and optimized via the cross-entropy loss (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
153
 
154
- ***
155
-
156
  ## Citation
157
 
158
  ```bibtex
159
- @online{louis2023,
160
- author = 'Antoine Louis',
161
- title = 'biencoder-distilcamembert-mmarcoFR: A Biencoder Model Trained on French mMARCO',
162
- publisher = 'Hugging Face',
163
- month = 'may',
164
- year = '2023',
165
- url = 'https://huggingface.co/antoinelouis/biencoder-distilcamembert-mmarcoFR',
166
  }
167
  ```
 
45
 
46
  # biencoder-distilcamembert-mmarcoFR
47
 
48
+ This is a dense single-vector bi-encoder model for **French** that can be used for semantic search. The model maps queries and passages to 768-dimensional dense vectors which are used to compute relevance through cosine similarity.
49
 
50
  ## Usage
51
 
 
122
  print(similarity)
123
  ```
124
 
 
 
125
  ## Evaluation
126
 
127
+ The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of
128
+ 8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
129
+ To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co/spaces/antoinelouis/decouvrir) leaderboard.
 
 
 
 
 
 
 
 
 
 
 
130
 
131
  ## Training
132
 
 
138
 
139
  The model is initialized from the [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) checkpoint and optimized via the cross-entropy loss (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
140
 
 
 
141
  ## Citation
142
 
143
  ```bibtex
144
+ @online{louis2024decouvrir,
145
+ author = 'Antoine Louis',
146
+ title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
147
+ publisher = 'Hugging Face',
148
+ month = 'mar',
149
+ year = '2024',
150
+ url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
151
  }
152
  ```