antoinelouis commited on
Commit
0762ad9
·
verified ·
1 Parent(s): cf46f6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -88
README.md CHANGED
@@ -1,130 +1,157 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
 
 
 
 
 
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
16
 
17
- ## Usage (Sentence-Transformers)
18
 
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
 
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
 
25
- Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
 
 
 
 
 
 
34
  ```
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
 
37
 
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
41
  ```python
42
  from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
 
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
  def mean_pooling(model_output, attention_mask):
 
48
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
 
52
 
53
- # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
- # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
- # Tokenize sentences
61
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
-
63
- # Compute token embeddings
64
  with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
 
 
72
  ```
73
 
 
74
 
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
 
83
  ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 3900 with parameters:
89
- ```
90
- {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
 
95
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
96
- ```
97
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
98
- ```
99
 
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 20,
104
- "evaluation_steps": 0,
105
- "evaluator": "NoneType",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05,
110
- "no_deprecation_warning": true
111
- },
112
- "scheduler": "warmuplinear",
113
- "steps_per_epoch": null,
114
- "warmup_steps": 7800,
115
- "weight_decay": 0.01
116
- }
117
- ```
118
 
 
119
 
120
- ## Full Model Architecture
121
- ```
122
- SentenceTransformerCustom(
123
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DebertaV2Model
124
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
125
- )
126
- ```
127
 
128
- ## Citing & Authors
129
 
130
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ language: fr
4
+ license: mit
5
+ datasets:
6
+ - unicamp-dl/mmarco
7
+ metrics:
8
+ - recall
9
  tags:
10
+ - passage-retrieval
11
+ library_name: sentence-transformers
12
+ base_model: microsoft/mdeberta-v3-base
13
+ model-index:
14
+ - name: biencoder-mdebertav3-mmarcoFR
15
+ results:
16
+ - task:
17
+ type: sentence-similarity
18
+ name: Passage Retrieval
19
+ dataset:
20
+ type: unicamp-dl/mmarco
21
+ name: mMARCO-fr
22
+ config: french
23
+ split: validation
24
+ metrics:
25
+ - type: recall_at_1000
26
+ name: Recall@1000
27
+ value: 87.04
28
+ - type: recall_at_500
29
+ name: Recall@500
30
+ value: 83.31
31
+ - type: recall_at_100
32
+ name: Recall@100
33
+ value: 71.44
34
+ - type: recall_at_10
35
+ name: Recall@10
36
+ value: 45.62
37
+ - type: map_at_10
38
+ name: MAP@10
39
+ value: 24.36
40
+ - type: ndcg_at_10
41
+ name: nDCG@10
42
+ value: 29.56
43
+ - type: mrr_at_10
44
+ name: MRR@10
45
+ value: 24.88
46
  ---
47
 
48
+ # biencoder-mdebertav3-mmarcoFR
 
 
49
 
50
+ This is a dense single-vector bi-encoder model for **French** that can be used for semantic search. The model maps queries and passages to 768-dimensional dense vectors which are used to compute relevance through cosine similarity.
51
 
52
+ ## Usage
53
 
54
+ Here are some examples for using the model with [Sentence-Transformers](#using-sentence-transformers), [FlagEmbedding](#using-flagembedding), or [Huggingface Transformers](#using-huggingface-transformers).
55
 
56
+ #### Using Sentence-Transformers
 
 
57
 
58
+ Start by installing the [library](https://www.SBERT.net): `pip install -U sentence-transformers`. Then, you can use the model like this:
59
 
60
  ```python
61
  from sentence_transformers import SentenceTransformer
 
62
 
63
+ queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
64
+ passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
65
+
66
+ model = SentenceTransformer('antoinelouis/biencoder-mdebertav3-mmarcoFR')
67
+ q_embeddings = model.encode(queries, normalize_embeddings=True)
68
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
69
+
70
+ similarity = q_embeddings @ p_embeddings.T
71
+ print(similarity)
72
  ```
73
 
74
+ #### Using FlagEmbedding
75
+
76
+ Start by installing the [library](https://github.com/FlagOpen/FlagEmbedding/): `pip install -U FlagEmbedding`. Then, you can use the model like this:
77
+
78
+ ```python
79
+ from FlagEmbedding import FlagModel
80
+
81
+ queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
82
+ passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
83
+
84
+ model = FlagModel('antoinelouis/biencoder-mdebertav3-mmarcoFR')
85
+ q_embeddings = model.encode(queries, normalize_embeddings=True)
86
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
87
+
88
+ similarity = q_embeddings @ p_embeddings.T
89
+ print(similarity)
90
+ ```
91
 
92
+ #### Using Transformers
93
 
94
+ Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
 
95
 
96
  ```python
97
  from transformers import AutoTokenizer, AutoModel
98
+ from torch.nn.functional import normalize
 
99
 
 
100
  def mean_pooling(model_output, attention_mask):
101
+ """ Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
102
  token_embeddings = model_output[0] #First element of model_output contains all token embeddings
103
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
104
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
105
 
106
 
107
+ queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
108
+ passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
109
 
110
+ tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-mdebertav3-mmarcoFR')
111
+ model = AutoModel.from_pretrained('antoinelouis/biencoder-mdebertav3-mmarcoFR')
 
112
 
113
+ q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
114
+ p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
 
 
115
  with torch.no_grad():
116
+ q_output = model(**encoded_queries)
117
+ p_output = model(**encoded_passages)
118
+ q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
119
+ q_embedddings = normalize(q_embeddings, p=2, dim=1)
120
+ p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
121
+ p_embedddings = normalize(p_embeddings, p=2, dim=1)
122
+
123
+ similarity = q_embeddings @ p_embeddings.T
124
+ print(similarity)
125
  ```
126
 
127
+ ## Evaluation
128
 
129
+ The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of
130
+ 8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
131
+ To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co/spaces/antoinelouis/decouvrir) leaderboard.
 
 
 
 
132
 
133
  ## Training
 
 
 
 
 
 
 
 
 
 
134
 
135
+ #### Data
 
 
 
136
 
137
+ We use the French training samples from the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO that contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ #### Implementation
140
 
141
+ The model is initialized from the [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) checkpoint and optimized via the cross-entropy loss
142
+ (as in [DPR](https://doi.org/10.48550/arXiv.2004.04906)) with a temperature of 0.05. It is fine-tuned on one 80GB NVIDIA H100 GPU for 20 epochs (i.e., 78k steps)
143
+ using the AdamW optimizer with a batch size of 128, a peak learning rate of 2e-5 with warm up along the first 7800 steps and linear scheduling. We set the maximum
144
+ sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
 
 
 
145
 
146
+ ## Citation
147
 
148
+ ```bibtex
149
+ @online{louis2024decouvrir,
150
+ author = 'Antoine Louis',
151
+ title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
152
+ publisher = 'Hugging Face',
153
+ month = 'mar',
154
+ year = '2024',
155
+ url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
156
+ }
157
+ ```