speech-test commited on
Commit
23bc8a0
·
1 Parent(s): c706594

Initial commit (commonvoice only)

Browse files
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ru
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: [Anton Lozhkov] Russian XLSR Wav2Vec2 Large 53
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice ru
21
+ type: common_voice
22
+ args: ru
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 22.36
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-Russian
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Russian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import torch
40
+ import torchaudio
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+
44
+ test_dataset = load_dataset("common_voice", "ru", split="test[:2%]")
45
+
46
+ processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
47
+ model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
48
+
49
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
50
+
51
+ # Preprocessing the datasets.
52
+ # We need to read the aduio files as arrays
53
+ def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
+
58
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
59
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
+
61
+ with torch.no_grad():
62
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
+
64
+ predicted_ids = torch.argmax(logits, dim=-1)
65
+
66
+ print("Prediction:", processor.batch_decode(predicted_ids))
67
+ print("Reference:", test_dataset["sentence"][:2])
68
+ ```
69
+
70
+
71
+ ## Evaluation
72
+
73
+ The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
74
+
75
+
76
+ ```python
77
+ import torch
78
+ import torchaudio
79
+ from datasets import load_dataset, load_metric
80
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
81
+ import re
82
+
83
+ test_dataset = load_dataset("common_voice", "ru", split="test")
84
+ wer = load_metric("wer")
85
+
86
+ processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
87
+ model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
88
+ model.to("cuda")
89
+
90
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
+
92
+ def clean_sentence(sent):
93
+ sent = sent.lower()
94
+ # replace non-alphanumeric characters with space ("какой-то, вот" -> "какой то вот")
95
+ sent = "".join(ch if ch.isalnum() else " " for ch in sent)
96
+ # remove repeated spaces
97
+ sent = " ".join(sent.split())
98
+ # these letters are considered equivalent in written Russian
99
+ sent = sent.replace('ё', 'е')
100
+ return sent
101
+
102
+ # Preprocessing the datasets.
103
+ # We need to read the aduio files as arrays
104
+ def speech_file_to_array_fn(batch):
105
+ batch["sentence"] = clean_sentence(batch["sentence"])
106
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
107
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
108
+ return batch
109
+
110
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
111
+
112
+ # Preprocessing the datasets.
113
+ # We need to read the aduio files as arrays
114
+ def evaluate(batch):
115
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
116
+
117
+ with torch.no_grad():
118
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
119
+
120
+ pred_ids = torch.argmax(logits, dim=-1)
121
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
122
+ return batch
123
+
124
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
125
+
126
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
127
+ ```
128
+
129
+ **Test Result**: 22.36 %
130
+
131
+
132
+ ## Training
133
+
134
+ The Common Voice `train` and `validation` datasets were used for training.
135
+
136
+ The script used for training can be found [here](github.com)
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "anton-l/wav2vec2-large-xlsr-53-russian",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 53,
74
+ "transformers_version": "4.4.0",
75
+ "vocab_size": 54
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e062de78eecef4bcd92288f9b31e91609d98274e473b2da9390dfc182fc686
3
+ size 1262149336
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"a": 1, "b": 2, "c": 3, "e": 4, "f": 5, "g": 6, "h": 7, "i": 8, "k": 9, "l": 10, "m": 11, "n": 12, "o": 13, "p": 14, "r": 15, "s": 16, "t": 17, "x": 18, "z": 19, "а": 20, "б": 21, "в": 22, "г": 23, "д": 24, "е": 25, "ж": 26, "з": 27, "и": 28, "й": 29, "к": 30, "л": 31, "м": 32, "н": 33, "о": 34, "п": 35, "р": 36, "с": 37, "т": 38, "у": 39, "ф": 40, "х": 41, "ц": 42, "ч": 43, "ш": 44, "щ": 45, "ъ": 46, "ы": 47, "ь": 48, "э": 49, "ю": 50, "я": 51, "|": 0, "[UNK]": 52, "[PAD]": 53}