|
|
|
import argparse |
|
import re |
|
import unicodedata |
|
from typing import Dict |
|
|
|
import torch |
|
from datasets import Audio, Dataset, load_dataset, load_metric |
|
|
|
from transformers import AutoFeatureExtractor, pipeline |
|
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
"""DO NOT CHANGE. This function computes and logs the result metrics.""" |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute( |
|
references=result["target"], predictions=result["prediction"] |
|
) |
|
cer_result = cer.compute( |
|
references=result["target"], predictions=result["prediction"] |
|
) |
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str) -> str: |
|
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" |
|
|
|
chars_to_ignore_regex = """[\,\?\.\!\-\;\:\"\“\%\‘\”\�\—\’\…\–\'\।\॔]""" |
|
text = unicodedata.normalize("NFKC", text) |
|
text = re.sub(chars_to_ignore_regex, "", text.lower()) |
|
|
|
|
|
|
|
token_sequences_to_ignore = ["\n\n", "\n", " ", " "] |
|
|
|
for t in token_sequences_to_ignore: |
|
text = " ".join(text.split(t)) |
|
|
|
return text |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset( |
|
args.dataset, args.config, split=args.split, use_auth_token=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
|
|
|
if args.device is None: |
|
args.device = 0 if torch.cuda.is_available() else -1 |
|
asr = pipeline( |
|
"automatic-speech-recognition", model=args.model_id, device=args.device |
|
) |
|
|
|
|
|
def map_to_pred(batch): |
|
prediction = asr( |
|
batch["audio"]["array"], |
|
chunk_length_s=args.chunk_length_s, |
|
stride_length_s=args.stride_length_s, |
|
) |
|
|
|
batch["prediction"] = prediction["text"] |
|
batch["target"] = normalize_text(batch["sentence"]) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_id", |
|
type=str, |
|
required=True, |
|
help="Model identifier. Should be loadable with 🤗 Transformers", |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
required=True, |
|
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", |
|
) |
|
parser.add_argument( |
|
"--config", |
|
type=str, |
|
required=True, |
|
help="Config of the dataset. *E.g.* `'en'` for Common Voice", |
|
) |
|
parser.add_argument( |
|
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`" |
|
) |
|
parser.add_argument( |
|
"--chunk_length_s", |
|
type=float, |
|
default=None, |
|
help="Chunk length in seconds. Defaults to 5 seconds.", |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", |
|
type=float, |
|
default=None, |
|
help="Stride of the audio chunks. Defaults to 1 second.", |
|
) |
|
parser.add_argument( |
|
"--log_outputs", |
|
action="store_true", |
|
help="If defined, write outputs to log file for analysis.", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=int, |
|
default=None, |
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|