File size: 5,708 Bytes
a9b4c69 7529ba4 56d96c8 db7fbde 56d96c8 3f9019f 28cf2fc d55cbf1 28cf2fc fa00b57 c4cb87b f906787 c4cb87b fa00b57 f906787 fa00b57 52d96d8 fa00b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
license: mit
language:
- ru
- kbd
datasets:
- anzorq/kbd-ru
widget:
- text: Я иду домой.
example_title: Я иду домой.
- text: Дети играют во дворе.
example_title: Дети играют во дворе.
- text: Сколько тебе лет?
example_title: Сколько тебе лет?
- text: На следующий день мы отправились в путь.
example_title: На следующий день мы отправились в путь.
tags:
- translation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# m2m100_ru_kbd_44K
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on a ru-kbd dataset, containing 44K sentences from books, textbooks, dictionaries etc..
It achieves the following results on the evaluation set:
- Loss: 0.9399
- Bleu: 22.389
- Gen Len: 16.562
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.2391 | 0.18 | 1000 | 1.9921 | 7.4066 | 16.377 |
| 1.8436 | 0.36 | 2000 | 1.6756 | 9.3443 | 18.428 |
| 1.63 | 0.53 | 3000 | 1.5361 | 10.9057 | 17.134 |
| 1.5205 | 0.71 | 4000 | 1.3994 | 12.6061 | 17.471 |
| 1.4471 | 0.89 | 5000 | 1.3107 | 14.4452 | 16.985 |
| 1.1915 | 1.07 | 6000 | 1.2462 | 15.1903 | 16.544 |
| 1.1165 | 1.25 | 7000 | 1.1917 | 16.3859 | 17.044 |
| 1.0654 | 1.43 | 8000 | 1.1351 | 17.617 | 16.481 |
| 1.0464 | 1.6 | 9000 | 1.0939 | 18.649 | 16.517 |
| 1.0376 | 1.78 | 10000 | 1.0603 | 18.2567 | 17.152 |
| 1.0027 | 1.96 | 11000 | 1.0184 | 20.6011 | 16.875 |
| 0.7741 | 2.14 | 12000 | 1.0159 | 20.4801 | 16.488 |
| 0.7566 | 2.32 | 13000 | 0.9899 | 21.6967 | 16.681 |
| 0.7346 | 2.49 | 14000 | 0.9738 | 21.8249 | 16.679 |
| 0.7397 | 2.67 | 15000 | 0.9555 | 21.569 | 16.608 |
| 0.6919 | 2.85 | 16000 | 0.9441 | 22.4658 | 16.493 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.10.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
---
# Model inference
### 1. Install dependencies
```bash
pip install transformers sentencepiece torch ctranslate2
```
### 2. Inference
## CTranslate2 model (quantized model, much faster inference)
First, download the files for the model in ctranslate2 format:
```Python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='config.json', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='model.bin', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='sentencepiece.bpe.model', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='shared_vocabulary.json', local_dir='./')
```
Run inference:
```Python
import ctranslate2
import transformers
translator = ctranslate2.Translator("ctranslate2") # Ensure correct path to the ctranslate2 model directory
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K")
tgt_lang="zu"
def translate(text, num_beams=4, num_return_sequences=4):
num_return_sequences = min(num_return_sequences, num_beams)
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text))
target_prefix = [tokenizer.lang_code_to_token[tgt_lang]]
results = translator.translate_batch(
[source],
target_prefix=[target_prefix],
beam_size=num_beams,
num_hypotheses=num_return_sequences
)
translations = []
for hypothesis in results[0].hypotheses:
target = hypothesis[1:]
decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
translations.append(decoded_sentence)
return text, translations
# Test the translation
text = "Текст для перевода"
print(translate(text))
```
## Vanilla model
```Python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"
tgt_lang="zu"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
def translate(text, num_beams=4, num_return_sequences=4):
inputs = tokenizer(text, return_tensors="pt")
num_return_sequences = min(num_return_sequences, num_beams)
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
)
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
return text, translations
# Test the translation
text = "Текст для перевода"
print(translate(text))
``` |