File size: 5,708 Bytes
a9b4c69
7529ba4
56d96c8
 
 
db7fbde
 
56d96c8
3f9019f
 
 
 
 
 
 
 
 
 
28cf2fc
 
 
 
 
 
 
d55cbf1
28cf2fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa00b57
 
 
 
 
 
 
 
 
 
 
 
 
 
c4cb87b
 
 
 
 
 
 
 
 
f906787
c4cb87b
fa00b57
 
 
 
f906787
fa00b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d96d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa00b57
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: mit
language:
- ru
- kbd
datasets:
- anzorq/kbd-ru
widget:
- text: Я иду домой.
  example_title: Я иду домой.
- text: Дети играют во дворе.
  example_title: Дети играют во дворе.
- text: Сколько тебе лет?
  example_title: Сколько тебе лет?
- text: На следующий день мы отправились в путь.
  example_title: На следующий день мы отправились в путь.
tags:
- translation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# m2m100_ru_kbd_44K

This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on a ru-kbd dataset, containing 44K sentences from books, textbooks, dictionaries etc..
It achieves the following results on the evaluation set:
- Loss: 0.9399
- Bleu: 22.389
- Gen Len: 16.562

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.2391        | 0.18  | 1000  | 1.9921          | 7.4066  | 16.377  |
| 1.8436        | 0.36  | 2000  | 1.6756          | 9.3443  | 18.428  |
| 1.63          | 0.53  | 3000  | 1.5361          | 10.9057 | 17.134  |
| 1.5205        | 0.71  | 4000  | 1.3994          | 12.6061 | 17.471  |
| 1.4471        | 0.89  | 5000  | 1.3107          | 14.4452 | 16.985  |
| 1.1915        | 1.07  | 6000  | 1.2462          | 15.1903 | 16.544  |
| 1.1165        | 1.25  | 7000  | 1.1917          | 16.3859 | 17.044  |
| 1.0654        | 1.43  | 8000  | 1.1351          | 17.617  | 16.481  |
| 1.0464        | 1.6   | 9000  | 1.0939          | 18.649  | 16.517  |
| 1.0376        | 1.78  | 10000 | 1.0603          | 18.2567 | 17.152  |
| 1.0027        | 1.96  | 11000 | 1.0184          | 20.6011 | 16.875  |
| 0.7741        | 2.14  | 12000 | 1.0159          | 20.4801 | 16.488  |
| 0.7566        | 2.32  | 13000 | 0.9899          | 21.6967 | 16.681  |
| 0.7346        | 2.49  | 14000 | 0.9738          | 21.8249 | 16.679  |
| 0.7397        | 2.67  | 15000 | 0.9555          | 21.569  | 16.608  |
| 0.6919        | 2.85  | 16000 | 0.9441          | 22.4658 | 16.493  |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.10.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1

---

# Model inference
### 1. Install dependencies
```bash
pip install transformers sentencepiece torch ctranslate2
```

### 2. Inference


## CTranslate2 model (quantized model, much faster inference)
First, download the files for the model in ctranslate2 format:
```Python
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='config.json', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='model.bin', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='sentencepiece.bpe.model', local_dir='./')
hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='shared_vocabulary.json', local_dir='./')
```

Run inference:
```Python
import ctranslate2
import transformers

translator = ctranslate2.Translator("ctranslate2") # Ensure correct path to the ctranslate2 model directory
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K")
tgt_lang="zu"

def translate(text, num_beams=4, num_return_sequences=4):
    num_return_sequences = min(num_return_sequences, num_beams)

    source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text))
    target_prefix = [tokenizer.lang_code_to_token[tgt_lang]]
    results = translator.translate_batch(
        [source],
        target_prefix=[target_prefix],
        beam_size=num_beams,
        num_hypotheses=num_return_sequences
    )
    
    translations = []
    for hypothesis in results[0].hypotheses:
        target = hypothesis[1:]
        decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
        translations.append(decoded_sentence)
    
    return text, translations

# Test the translation
text = "Текст для перевода"
print(translate(text))
```

## Vanilla model
```Python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K"  
tgt_lang="zu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)

def translate(text, num_beams=4, num_return_sequences=4):
    inputs = tokenizer(text, return_tensors="pt")
    num_return_sequences = min(num_return_sequences, num_beams)

    translated_tokens = model.generate(
        **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
    )

    translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
    return text, translations

# Test the translation
text = "Текст для перевода"
print(translate(text))
```