Transformers
Safetensors
openlm
Inference Endpoints
vaishaal commited on
Commit
1d8bc64
·
verified ·
1 Parent(s): a5ad86f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -3
README.md CHANGED
@@ -1,3 +1,144 @@
1
- ---
2
- license: apple-ascl
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apple-ascl
3
+ ---
4
+
5
+
6
+
7
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63118add64939fabc0108b28/BB42g4V8HTxb5dR4tcy8A.png" alt="DCLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
8
+
9
+
10
+ # Model Card for DCLM-Baseline-7B
11
+
12
+ DCLM-Baseline-7B is a 7 billion parameter language model trained on the DCLM-Baseline dataset, which was curated as part of the DataComp for Language Models (DCLM) benchmark. This model is designed to showcase the effectiveness of systematic data curation techniques for improving language model performance.
13
+
14
+ ## Model Details
15
+
16
+ | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
17
+ |------|-----------------|--------|-------------|-----------------|----------------|
18
+ | 7B | 2.6T | 32 | 4096 | 32 | 2048 |
19
+
20
+
21
+ ### Model Description
22
+
23
+ - **Developed by:** DataComp for Language Models (DCLM) Team
24
+ - **Model type:** Decoder-only Transformer language model
25
+ - **Language(s):** English (primarily)
26
+ - **License:** Apple Sample Code License
27
+ - **Contact:** [email protected]
28
+ - **Date:** June 2024
29
+
30
+ ### Model Sources
31
+
32
+ - **Repository:** https://github.com/mlfoundations/dclm
33
+ - **Dataset:** https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
34
+ - **Paper:** [DataComp-LM: In search of the next generation of training sets for language models](https://arxiv.org/abs/2406.11794)
35
+
36
+
37
+ ### Training Details
38
+
39
+ The model was trained using the following setup:
40
+
41
+ - **Architecture:** Decoder-only Transformer
42
+ - **Framework:** PyTorch with OpenLM
43
+ - **Optimizer:** AdamW
44
+ - **Learning Rate:** 2e-3 (peak)
45
+ - **Weight Decay:** 0.05
46
+ - **Batch Size:** 2048 sequences
47
+ - **Sequence Length:** 2048 tokens
48
+ - **Total Training Tokens:** 2.5T
49
+ - **Hardware:** Trained on H100 GPUs
50
+
51
+ For more detailed training information, please refer to Section 3.4 and Appendix F of the DCLM paper.
52
+ To ensure our trained model is broadly useful, including for math and coding tasks, we combine our 3.8T [DCLM-BASELINE](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0) with the [StarCoder](https://huggingface.co/datasets/bigcode/starcoderdata) and [ProofPile2](https://huggingface.co/datasets/EleutherAI/proof-pile-2) data to arrive at a 4.1T token dataset.
53
+ An additional 100B of training was done on the same dataset using [Dataset Decomposition](https://arxiv.org/abs/2405.13226) to extend context length from 2k -> 8k.
54
+
55
+
56
+ ## Evaluation
57
+
58
+ Here are the evaluation results for DCLM-Baseline-7B on various tasks (using [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite)
59
+
60
+ | Task | Score |
61
+ |------|-------|
62
+ | MMLU (zero-shot) | 0.5535 |
63
+ | MMLU (few-shot) | 0.6369 |
64
+ | HellaSwag (zero-shot) | 0.7933 |
65
+ | HellaSwag | 0.8103 |
66
+ | Jeopardy | 0.5252 |
67
+ | TriviaQA | 0.5703 |
68
+ | GSM8K (CoT) | 0.1024 |
69
+ | AGI Eval SAT Math (CoT) | 0.2227 |
70
+ | AQuA (CoT) | 0.1061 |
71
+ | SVAMP (CoT) | 0.5133 |
72
+ | BigBench QA Wikidata | 0.7344 |
73
+ | ARC Easy | 0.8249 |
74
+ | ARC Challenge | 0.6126 |
75
+ | BigBench Misconceptions | 0.6849 |
76
+ | COPA | 0.8800 |
77
+ | SIQA | 0.8270 |
78
+ | CommonsenseQA | 0.7993 |
79
+ | PIQA | 0.8161 |
80
+ | OpenBookQA | 0.4500 |
81
+ | BigBench Novel Concepts | 0.6563 |
82
+ | BigBench Strange Stories | 0.7759 |
83
+ | BigBench Strategy QA | 0.6540 |
84
+ | LAMBADA | 0.7553 |
85
+ | Winograd | 0.9011 |
86
+ | Winogrande | 0.7395 |
87
+ | BigBench Conlang Translation | 0.1220 |
88
+ | BigBench Language Identification | 0.5216 |
89
+ | BigBench Conceptual Combinations | 0.6796 |
90
+ | BigBench Elementary Math QA | 0.3500 |
91
+ | BigBench Dyck Languages | 0.3470 |
92
+ | AGI Eval LSAT AR | 0.2609 |
93
+ | BigBench CS Algorithms | 0.5379 |
94
+ | BigBench Logical Deduction | 0.3653 |
95
+ | BigBench Operators | 0.5000 |
96
+ | BigBench Repeat Copy Logic | 0.5313 |
97
+ | Simple Arithmetic (no spaces) | 0.3000 |
98
+ | Simple Arithmetic (with spaces) | 0.3070 |
99
+ | MathQA | 0.3108 |
100
+ | LogiQA | 0.4147 |
101
+ | PubMedQA | 0.7170 |
102
+ | SQuAD | 0.6317 |
103
+ | AGI Eval LSAT RC | 0.7015 |
104
+ | AGI Eval LSAT LR | 0.5373 |
105
+ | CoQA | 0.4981 |
106
+ | BigBench Understanding Fables | 0.7090 |
107
+ | BoolQ | 0.8284 |
108
+ | AGI Eval SAT EN | 0.8252 |
109
+ | Winogender MC (Female) | 0.6333 |
110
+ | Winogender MC (Male) | 0.5833 |
111
+ | Enterprise PII Classification | 0.8091 |
112
+ | BBQ | 0.6420 |
113
+ | GPQA Main | 0.2612 |
114
+ | GPQA Diamond | 0.2172 |
115
+
116
+ Note: All scores are presented as decimal values between 0 and 1, representing the proportion of correct answers or the model's performance on each task.
117
+
118
+
119
+
120
+ ## Limitations and Biases
121
+
122
+ While DCLM-Baseline-7B demonstrates strong performance across a range of tasks, it's important to note:
123
+
124
+ 1. The model may exhibit biases present in its training data, which is derived from web crawl data.
125
+ 2. It has not undergone specific alignment or safety fine-tuning, so outputs should be used with caution.
126
+ 3. Performance on tasks not included in the evaluation suite may vary.
127
+ 4. The model's knowledge is limited to its training data cutoff date.
128
+
129
+ ## Ethical Considerations
130
+
131
+ Users should be aware that this model, like all large language models, can potentially generate harmful or biased content. It should not be used for making decisions about individuals or in sensitive applications without appropriate safeguards and human oversight.
132
+
133
+ ## Citation
134
+
135
+ If you use this model in your research, please cite:
136
+
137
+ ```
138
+ @article{Li2024DataCompLM,
139
+ title={DataComp-LM: In search of the next generation of training sets for language models},
140
+ author={Jeffrey Li and Alex Fang and Georgios Smyrnis and Maor Ivgi and Matt Jordan and Samir Gadre and Hritik Bansal and Etash Guha and Sedrick Keh and Kushal Arora and [... full author list]},
141
+ journal={arXiv preprint arXiv:2406.11794},
142
+ year={2024}
143
+ }
144
+ ```