changed MobileViTFeatureExtractor to MobileViTImageProcessor
Browse files
README.md
CHANGED
@@ -30,14 +30,14 @@ You can use the raw model for image classification. See the [model hub](https://
|
|
30 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
31 |
|
32 |
```python
|
33 |
-
from transformers import
|
34 |
from PIL import Image
|
35 |
import requests
|
36 |
|
37 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
38 |
image = Image.open(requests.get(url, stream=True).raw)
|
39 |
|
40 |
-
feature_extractor =
|
41 |
model = MobileViTV2ForImageClassification.from_pretrained("shehan97/mobilevitv2-1.0-imagenet1k-256")
|
42 |
|
43 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
|
30 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
31 |
|
32 |
```python
|
33 |
+
from transformers import MobileViTImageProcessor, MobileViTV2ForImageClassification
|
34 |
from PIL import Image
|
35 |
import requests
|
36 |
|
37 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
38 |
image = Image.open(requests.get(url, stream=True).raw)
|
39 |
|
40 |
+
feature_extractor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-imagenet1k-256")
|
41 |
model = MobileViTV2ForImageClassification.from_pretrained("shehan97/mobilevitv2-1.0-imagenet1k-256")
|
42 |
|
43 |
inputs = feature_extractor(images=image, return_tensors="pt")
|