Matthijs Hollemans
commited on
Commit
·
f62ab0e
1
Parent(s):
5e4d780
clone from https://huggingface.co/shehan97/mobilevitv2-1.0-voc-deeplabv3
Browse files- README.md +63 -0
- config.json +76 -0
- preprocessor_config.json +16 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
---
|
2 |
license: other
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
library_name: transformers
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
---
|
8 |
+
|
9 |
+
# MobileViTv2 + DeepLabv3 (shehan97/mobilevitv2-1.0-voc-deeplabv3)
|
10 |
+
|
11 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
+
MobileViTv2 model pre-trained on PASCAL VOC at resolution 512x512.
|
13 |
+
It was introduced in [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari, and first released in [this](https://github.com/apple/ml-cvnets) repository. The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE).
|
14 |
+
|
15 |
+
Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team.
|
16 |
+
|
17 |
+
### Model Description
|
18 |
+
|
19 |
+
<!-- Provide a longer summary of what this model is. -->
|
20 |
+
MobileViTv2 is constructed by replacing the multi-headed self-attention in MobileViT with separable self-attention.
|
21 |
+
|
22 |
+
The model in this repo adds a [DeepLabV3](https://arxiv.org/abs/1706.05587) head to the MobileViT backbone for semantic segmentation.
|
23 |
+
|
24 |
+
### Intended uses & limitations
|
25 |
+
|
26 |
+
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=mobilevitv2) to look for fine-tuned versions on a task that interests you.
|
27 |
+
|
28 |
+
### How to use
|
29 |
+
|
30 |
+
Here is how to use this model:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import MobileViTv2FeatureExtractor, MobileViTv2ForSemanticSegmentation
|
34 |
+
from PIL import Image
|
35 |
+
import requests
|
36 |
+
|
37 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
38 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
39 |
+
|
40 |
+
feature_extractor = MobileViTv2FeatureExtractor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
|
41 |
+
model = MobileViTv2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
|
42 |
+
|
43 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
44 |
+
|
45 |
+
outputs = model(**inputs)
|
46 |
+
logits = outputs.logits
|
47 |
+
|
48 |
+
predicted_mask = logits.argmax(1).squeeze(0)
|
49 |
+
```
|
50 |
+
|
51 |
+
Currently, both the feature extractor and model support PyTorch.
|
52 |
+
|
53 |
+
## Training data
|
54 |
+
|
55 |
+
The MobileViT + DeepLabV3 model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes, and then fine-tuned on the [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/) dataset.
|
56 |
+
|
57 |
+
### BibTeX entry and citation info
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@inproceedings{vision-transformer,
|
61 |
+
title = {Separable Self-attention for Mobile Vision Transformers},
|
62 |
+
author = {Sachin Mehta and Mohammad Rastegari},
|
63 |
+
year = {2022},
|
64 |
+
URL = {https://arxiv.org/abs/2206.02680}
|
65 |
+
}
|
66 |
+
```
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MobileViTv2ForSemanticSegmentation"
|
4 |
+
],
|
5 |
+
"aspp_dropout_prob": 0.1,
|
6 |
+
"aspp_out_channels": 512,
|
7 |
+
"atrous_rates": [
|
8 |
+
6,
|
9 |
+
12,
|
10 |
+
18
|
11 |
+
],
|
12 |
+
"attn_dropout": 0.0,
|
13 |
+
"classifier_dropout_prob": 0.1,
|
14 |
+
"conv_kernel_size": 3,
|
15 |
+
"expand_ratio": 2.0,
|
16 |
+
"ffn_dropout": 0.0,
|
17 |
+
"hidden_act": "swish",
|
18 |
+
"id2label": {
|
19 |
+
"0": "background",
|
20 |
+
"1": "aeroplane",
|
21 |
+
"2": "bicycle",
|
22 |
+
"3": "bird",
|
23 |
+
"4": "boat",
|
24 |
+
"5": "bottle",
|
25 |
+
"6": "bus",
|
26 |
+
"7": "car",
|
27 |
+
"8": "cat",
|
28 |
+
"9": "chair",
|
29 |
+
"10": "cow",
|
30 |
+
"11": "diningtable",
|
31 |
+
"12": "dog",
|
32 |
+
"13": "horse",
|
33 |
+
"14": "motorbike",
|
34 |
+
"15": "person",
|
35 |
+
"16": "pottedplant",
|
36 |
+
"17": "sheep",
|
37 |
+
"18": "sofa",
|
38 |
+
"19": "train",
|
39 |
+
"20": "tvmonitor"
|
40 |
+
},
|
41 |
+
"image_size": 512,
|
42 |
+
"initializer_range": 0.02,
|
43 |
+
"label2id": {
|
44 |
+
"aeroplane": 1,
|
45 |
+
"background": 0,
|
46 |
+
"bicycle": 2,
|
47 |
+
"bird": 3,
|
48 |
+
"boat": 4,
|
49 |
+
"bottle": 5,
|
50 |
+
"bus": 6,
|
51 |
+
"car": 7,
|
52 |
+
"cat": 8,
|
53 |
+
"chair": 9,
|
54 |
+
"cow": 10,
|
55 |
+
"diningtable": 11,
|
56 |
+
"dog": 12,
|
57 |
+
"horse": 13,
|
58 |
+
"motorbike": 14,
|
59 |
+
"person": 15,
|
60 |
+
"pottedplant": 16,
|
61 |
+
"sheep": 17,
|
62 |
+
"sofa": 18,
|
63 |
+
"train": 19,
|
64 |
+
"tvmonitor": 20
|
65 |
+
},
|
66 |
+
"layer_norm_eps": 1e-05,
|
67 |
+
"mlp_ratio": 2.0,
|
68 |
+
"model_type": "mobilevitv2",
|
69 |
+
"num_channels": 3,
|
70 |
+
"output_stride": 16,
|
71 |
+
"patch_size": 2,
|
72 |
+
"semantic_loss_ignore_index": 255,
|
73 |
+
"torch_dtype": "float32",
|
74 |
+
"transformers_version": "4.29.0.dev0",
|
75 |
+
"width_multiplier": 1.0
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 512,
|
4 |
+
"width": 512
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_flip_channel_order": true,
|
8 |
+
"do_rescale": true,
|
9 |
+
"do_resize": true,
|
10 |
+
"image_processor_type": "MobileViTv2ImageProcessor",
|
11 |
+
"resample": 2,
|
12 |
+
"rescale_factor": 0.00392156862745098,
|
13 |
+
"size": {
|
14 |
+
"shortest_edge": 544
|
15 |
+
}
|
16 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de4592cb143dd4eb10e4c031e3a7c6db4e626abcb41599899ab8c98a68305d3
|
3 |
+
size 53468241
|