File size: 3,216 Bytes
9b27f91 f938018 9b27f91 f938018 9b27f91 f938018 9b27f91 8c9615d 9b27f91 f938018 9b27f91 b6b4275 9b27f91 b6b4275 f938018 9b27f91 f938018 7080c38 f938018 7080c38 f938018 7080c38 f938018 7080c38 f938018 7080c38 f938018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language:
- ka
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-1b-ka
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice ka
args: ka
metrics:
- type: wer
value: 7.39778066580026
name: WER LM
- type: cer
value: 1.1882089427096434
name: CER LM
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ka
metrics:
- name: Test WER
type: wer
value: 22.61
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ka
metrics:
- name: Test WER
type: wer
value: 21.58
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-1b-ka
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1022
- Wer: 0.1527
- Cer: 0.0221
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 |
| 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 |
| 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 |
| 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 |
| 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 |
| 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 |
| 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 |
| 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 |
| 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 |
| 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|