File size: 5,434 Bytes
0b3bb4e f057b32 0b3bb4e 442c8ce f057b32 220be08 70cd4d1 f7fcbfb 0b3bb4e 70cd4d1 9f2d78b bf2c834 9f2d78b 0b3bb4e 81ab2c6 b9ad619 824f730 d862046 824f730 b9ad619 81ab2c6 0b3bb4e 81ab2c6 0b3bb4e 81ab2c6 d862046 81ab2c6 0b3bb4e 9f2d78b 81ab2c6 9f2d78b ed2d450 9f2d78b 81ab2c6 9f2d78b bf2c834 9f2d78b bf2c834 9f2d78b bf2c834 9f2d78b 81ab2c6 0b3bb4e f057b32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
datasets:
- argilla/alpaca-gigo-detector
---
# 🚮 🦙 Alpaca GarbageCollector
> [Announcement tweet](https://twitter.com/dvilasuero/status/1643234487386374148?s=20)
A cross-lingual SetFit model to **detect bad instructions from Alpaca Datasets** and other instruction-following datasets.
`GarbageCollector` can greatly speed up the validation of instruction-datasets across many languages, flagging examples that need to be fixed or simply discarded.
Data quality is key for LLMs, but open-source LLMs are being built with data of "unknown" quality. This model can help practitioners to find and fix frequent issues (e.g., the model hallucinating stock prices, describing non-existing images, etc.)
The model has been fine-tuned with 1,000 labeled examples from the AlpacaCleaned dataset labeled with [Argilla](https://www.argilla.io/). It leverages a multilingual sentence transformer `paraphrase-multilingual-mpnet-base-v2`, inspired by the findings from the SetFit paper (Section 6. Multilingual experiments.), where they trained models in English that performed well across languages.
<div style="text-align:center">
<img src="https://huggingface.co/argilla/alpaca-hallucihunter-multilingual/resolve/main/front-image.png" alt="Alpaca Cleaned"">
</div>
It's a binary classifier with two labels:
- `ALL GOOD`, a given instruction, input, and output are correct,
- `BAD INSTRUCTION`, there's an issue with the instruction, and/or input and output.
This model can be used as follows (see full usage instructions below):
```python
from setfit import SetFitModel
# Download from Hub
model = SetFitModel.from_pretrained(
"argilla/alpaca-garbage-collector-multilingual"
)
text = """
INSTRUCTION:
Gebt mir drei Adjektive, um dieses Foto zu beschreiben.
INPUT:
[photo]
OUTPUT:
Auffällig, lebhaft, ruhig.
"""
model.predict([text])
```
Output: `BAD INSTRUCTION`
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
Load your Alpaca Dataset:
```bash
from datasets import Dataset, load_dataset
import pandas as pd
# this can be a translation (e.g., Spanish, Camoscio Italian Alpaca, etc.)
dataset = pd.read_json("https://github.com/gururise/AlpacaDataCleaned/raw/main/alpaca_data_cleaned.json")
dataset["id"] = [i for i in range(len(dataset))]
ds = Dataset.from_pandas(dataset)
```
Create a text field containing the instruction, input and output to use for inference:
```python
def transform(r):
return {
"text": f"INSTRUCTION:\n{r['instruction']}\nINPUT:\n{r['input']}\nOUTPUT:\n{r['output']}\n"
}
ds = ds.map(transform)
```
Load the model:
```python
from setfit import SetFitModel
# Download from Hub
model = SetFitModel.from_pretrained("argilla/alpaca-garbage-collector-multilingual")
```
Perform inference and prediction col to your dataset:
```python
labels = ["ALL GOOD", "BAD INSTRUCTION"]
def get_predictions(texts):
probas = model.predict_proba(texts, as_numpy=True)
for pred in probas:
yield [{"label": label, "score": score} for label, score in zip(labels, pred)]
ds = ds.map(lambda batch: {"prediction": list(get_predictions(batch["text"]))}, batched=True)
```
Load the data into Argilla for exploration and validation. First, you [need to launch Argilla](https://www.argilla.io/blog/launching-argilla-huggingface-hub). Then run:
```python
# Replace api_url with the url to your HF Spaces URL if using Spaces
# Replace api_key if you configured a custom API key
rg.init(
api_url="https://your-agilla-instance.hf.space",
api_key="team.apikey"
)
rg_dataset = rg.DatasetForTextClassification().from_datasets(ds)
rg.log(records=rg_dataset, name="alpaca_to_clean")
```
## Live demo
You can explore the dataset using [this Space](https://huggingface.co/spaces/argilla/alpaca-hallucihunter) (credentials: `argilla` / `1234`):
## Examples
This model has been tested with English, German, and Spanish. This approach will be used by ongoing efforts for improving the quality of Alpaca-based datasets, and updates will be reflected here.
Here are some examples of highest scored examples of `BAD INSTRUCTION`.
### English
<div style="text-align:center">
<img src="https://huggingface.co/argilla/alpaca-hallucihunter-multilingual/resolve/main/front-image.png" alt="Alpaca Cleaned"">
</div>
### German
<div style="text-align:center">
<img src="https://huggingface.co/argilla/alpaca-hallucihunter-multilingual/resolve/main/german-alpaca.png" alt="Alpaca Cleaned"">
</div>
### Spanish
<div style="text-align:center">
<img src="https://huggingface.co/argilla/alpaca-hallucihunter-multilingual/resolve/main/spanish-alpaca.png" alt="Alpaca Cleaned"">
</div>
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
``` |