File size: 4,779 Bytes
8b8b105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
AUG_TEST:
UNDERSAMPLE:
ACCELERATIONS:
- 6
AUG_TRAIN:
NOISE_P: 0.2
UNDERSAMPLE:
ACCELERATIONS:
- 6
CALIBRATION_SIZE: 24
CENTER_FRACTIONS: []
NAME: PoissonDiskMaskFunc
PRECOMPUTE:
NUM: -1
SEED: -1
USE_NOISE: false
CUDNN_BENCHMARK: false
DATALOADER:
ALT_SAMPLER:
PERIOD_SUPERVISED: 1
PERIOD_UNSUPERVISED: 1
DATA_KEYS: []
DROP_LAST: true
FILTER:
BY: []
GROUP_SAMPLER:
AS_BATCH_SAMPLER: true
BATCH_BY:
- inplane_shape
NUM_WORKERS: 8
PREFETCH_FACTOR: 2
SAMPLER_TRAIN: ''
SUBSAMPLE_TRAIN:
NUM_TOTAL: -1
NUM_TOTAL_BY_GROUP: []
NUM_UNDERSAMPLED: 0
NUM_VAL: -1
NUM_VAL_BY_GROUP: []
SEED: 1000
DATASETS:
QDESS:
DATASET_TYPE: qDESSImageDataset
ECHO_KIND: rms
KWARGS:
- orientation
- sagittal
TEST:
- stanford_qdess_v0.1.0_test
TRAIN:
- stanford_qdess_v0.1.0_train
VAL:
- stanford_qdess_v0.1.0_val
DESCRIPTION:
BRIEF: UNet segmentation following parameters used in MedSegPy - 100 epochs, 0.001
lr w/ 0.9x decay every (2,) epochs, early stopping- T=12, delta=1e-05, bsz=16
ENTITY_NAME: ss_recon
EXP_NAME: seg-baseline/unet-medsegpy-rms
PROJECT_NAME: ss_recon
TAGS:
- seg-baseline
- baseline
- unet-medsegpy
- neurips
MODEL:
CASCADE:
ITFS:
PERIOD: 0
RECON_MODEL_NAME: ''
SEG_MODEL_NAME: ''
SEG_NORMALIZE: ''
USE_MAGNITUDE: false
ZERO_FILL: false
CS:
MAX_ITER: 200
REGULARIZATION: 0.005
DENOISING:
META_ARCHITECTURE: GeneralizedUnrolledCNN
NOISE:
STD_DEV:
- 1
USE_FULLY_SAMPLED_TARGET: true
USE_FULLY_SAMPLED_TARGET_EVAL: null
DEVICE: cpu
META_ARCHITECTURE: GeneralizedUNet
N2R:
META_ARCHITECTURE: GeneralizedUnrolledCNN
USE_SUPERVISED_CONSISTENCY: false
NORMALIZER:
KEYWORDS: []
NAME: TopMagnitudeNormalizer
PARAMETERS:
INIT:
- initializers: (("kaiming_normal_", {"nonlinearity":"relu"}), "zeros_")
kind: conv
patterns: (".*weight", ".*bias")
- initializers: ("ones_", "zeros_")
kind: norm
patterns: (".*weight", ".*bias")
- initializers: ("xavier_uniform_",)
patterns: ("output_block\.weight",)
USE_COMPLEX_WEIGHTS: false
RECON_LOSS:
NAME: l1
RENORMALIZE_DATA: true
WEIGHT: 1.0
SEG:
ACTIVATION: sigmoid
CLASSES:
- pc
- fc
- men
- tc
INCLUDE_BACKGROUND: false
IN_CHANNELS: null
LOSS_NAME: FlattenedDiceLoss
LOSS_WEIGHT: 1.0
MODEL:
DYNUNET_MONAI:
DEEP_SUPERVISION: false
DEEP_SUPR_NUM: 1
KERNEL_SIZE:
- 3
NORM_NAME: instance
RES_BLOCK: false
STRIDES:
- 1
UPSAMPLE_KERNEL_SIZE:
- 2
UNET_MONAI:
ACTIVATION:
- prelu
- {}
CHANNELS: []
DROPOUT: 0.0
KERNEL_SIZE:
- 3
NORM:
- instance
- {}
NUM_RES_UNITS: 0
STRIDES: []
UP_KERNEL_SIZE:
- 3
VNET_MONAI:
ACTIVATION:
- elu
- inplace: true
DROPOUT_DIM: 3
DROPOUT_PROB: 0.5
USE_MAGNITUDE: true
TASKS:
- sem_seg
TB_RECON:
CHANNELS:
- 16
- 32
- 64
DEC_NUM_CONV_BLOCKS:
- 2
- 3
ENC_NUM_CONV_BLOCKS:
- 1
- 2
- 3
KERNEL_SIZE:
- 5
MULTI_CONCAT: []
ORDER:
- conv
- relu
STRIDES:
- 2
USE_MAGNITUDE: false
UNET:
BLOCK_ORDER:
- conv
- relu
- conv
- relu
- bn
CHANNELS: 32
DROPOUT: 0.0
IN_CHANNELS: 2
NUM_POOL_LAYERS: 5
OUT_CHANNELS: 2
UNROLLED:
CONV_BLOCK:
ACTIVATION: relu
NORM: none
NORM_AFFINE: false
ORDER:
- norm
- act
- drop
- conv
DROPOUT: 0.0
FIX_STEP_SIZE: false
KERNEL_SIZE:
- 3
NUM_EMAPS: 1
NUM_FEATURES: 256
NUM_RESBLOCKS: 2
NUM_UNROLLED_STEPS: 5
PADDING: ''
SHARE_WEIGHTS: false
WEIGHTS: ''
OUTPUT_DIR: results://skm-tea/neurips2021/U-Net_RSS
SEED: 9001
SOLVER:
BASE_LR: 0.001
CHECKPOINT_MONITOR: val_loss
CHECKPOINT_PERIOD: 1
EARLY_STOPPING:
MIN_DELTA: 1.0e-05
MONITOR: val_loss
PATIENCE: 12
GAMMA: 0.9
GRAD_ACCUM_ITERS: 1
LR_SCHEDULER_NAME: StepLR
MAX_ITER: 100
MIN_LR: 1.0e-08
MOMENTUM: 0.9
OPTIMIZER: Adam
STEPS:
- 2
TEST_BATCH_SIZE: 40
TRAIN_BATCH_SIZE: 16
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 1000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0
WEIGHT_DECAY_NORM: 0.0
TEST:
EVAL_PERIOD: 1
EXPECTED_RESULTS: []
FLUSH_PERIOD: -5
QDESS_EVALUATOR:
ADDITIONAL_PATHS: []
VAL_METRICS:
RECON: []
SEM_SEG:
- DSC
- VOE
- CV
- DSC_scan
- VOE_scan
- CV_scan
TIME_SCALE: epoch
VERSION: 1
VIS_PERIOD: -100
|