File size: 1,708 Bytes
fd58bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
  - GEMMA
  - instruct
  - finetune
  - chatml
  - gpt4
  - synthetic data
  - distillation
model-index:
  - name: google/gemma-2-2b
    results: []
license: apache-2.0
language:
  - en
library_name: transformers
datasets:
- teknium/OpenHermes-2.5
---

# Model Card for Meta-Llama-3.1-8B-openhermes-2.5

This model is a fine-tuned version of Gemma 2 -2B on the OpenHermes-2.5 dataset.

## Model Details

### Model Description

This is a fine-tuned version of the google/gemma-2-2b model, trained on the OpenHermes-2.5 dataset. It is designed for instruction following and general language tasks.

- **Developed by:** artificialguybr
- **Model type:** Causal Language Model
- **Language(s):** English
- **License:** apache-2.0
- **Finetuned from model:** google/gemma-2-2b

### Model Sources

- **Repository:** https://huggingface.co/artificialguybr/Gemma2-2B-OpenHermes2.5

## Uses

This model can be used for various natural language processing tasks, particularly those involving instruction following and general language understanding.

### Direct Use

The model can be used for tasks such as text generation, question answering, and other language-related applications.

### Out-of-Scope Use

The model should not be used for generating harmful or biased content. Users should be aware of potential biases in the training data.

## Training Details

### Training Data

The model was fine-tuned on the teknium/OpenHermes-2.5 dataset.

### Training Procedure

#### Hardware and Software

- **Hardware:** NVIDIA A100-SXM4-80GB (1 GPU)
- **Software Framework:** 🤗 Transformers, Axolotl

## Limitations and Biases

More information is needed about specific limitations and biases of this model.