aryasuneesh commited on
Commit
ac3ec7c
·
verified ·
1 Parent(s): 71f3375

Add trained model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
3
+ language:
4
+ - en
5
+ - ar
6
+ - pt
7
+ - es
8
+ - de
9
+ - th
10
+ library_name: sentence-transformers
11
+ license: apache-2.0
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:178008
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: 'PHOTOS: Giant human skeleton found in cave by Khao Khanap Nam
25
+ A unique discovery of the giant skeleton. Giant possibly killed by a snake. Important
26
+ discovery made by paleontologists. Group of scientists unearthing remains of a
27
+ human skeleton of gigantic proportions. Do we finally have irrefutable proof that
28
+ human giants existed?'
29
+ sentences:
30
+ - The skeleton that appears in the photographs belongs to a giant human. It is an
31
+ important discovery made by paleontologists.
32
+ - تم بعون الله شراء خصله شعر رسول الله واودعت اخيرا في دبي بعد شراءها من متحف قرطبة
33
+ بأسبانيا صلو على رسول الله
34
+ - Photo shows a 2015 visit by then-US president Barack Obama, infectious diseases
35
+ expert Dr. Anthony Fauci and philanthropist Melinda Gates to a laboratory in China’s
36
+ Wuhan
37
+ - source_sentence: iris o preventable ALL OR PATRIC emergency operations center medical
38
+ PH manual wennilindered J -Phansuk c
39
+ sentences:
40
+ - Bolivianos cruzan frontera para votar en legislativas nacionales argentinas
41
+ - Note that the pH of the coronavirus ranges from 5.5 to 8.5. So, all we have to
42
+ do, to eliminate the virus, is consume more alkaline foods, above the acid level
43
+ of the virus. Such as; Bananas, Lime → 9.9 pH, Yellow Lemon → 8.2 pH, Avocado
44
+ - 15.6 pH, Garlic - 13.2 pH, Mango - 8.7 pH, Tangerine - 8.5 pH, Pineapple - 12.7
45
+ pH, Watercress - 22.7 pH, oranges - 9.2 pH
46
+ - El aseo bucal extremo cura y previene el covid-19
47
+ - source_sentence: 'ACCORDING TO THE PENDLES 4/22/240 FROM TV AND POLLERS -CASTLE
48
+ - KEY KO - FAILED - DOES NOT KNOW THE 4.1% 26% fifteen%. 18% HANDLING CASTLE:
49
+ 41%. KEYKO: 26 + 15 +18 = 59% AST MANIPULATE AND PREPARE THE FRAUD AND THE DECEIT.'
50
+ sentences:
51
+ - A Spanish scientist declares that soccer players like Messi and Ronaldo earn 1
52
+ million euros per month and researchers who fight against COVID-19 1,800 euros
53
+ per month
54
+ - White and flawed votes join Keiko Fujimori in the survey
55
+ - The Oxford and Sinovac Biotech vaccines were tested only on animals before being
56
+ applied to Brazilians.
57
+ - source_sentence: Imagina que naciste en Una familia pobre. C HONDURAS
58
+ sentences:
59
+ - Doria's guinea pig who took the Chinese vaccine against the new coronavirus.
60
+ - This is a promo for a new Netflix series "Narcos Honduras"
61
+ - Demônio subindo no teto de igreja na Itália ou Espanha
62
+ - source_sentence: So Let's - Circle Back - to how YOU got your JOB - Jen Psaki
63
+ sentences:
64
+ - Jokowi Demonstrated in Germany
65
+ - NAIA reverts to MIA, its old name
66
+ - Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’
67
+ model-index:
68
+ - name: Multilingual mPNet finetuned for cross-lingual similarity
69
+ results:
70
+ - task:
71
+ type: semantic-similarity
72
+ name: Semantic Similarity
73
+ dataset:
74
+ name: eval similarity
75
+ type: eval-similarity
76
+ metrics:
77
+ - type: pearson_cosine
78
+ value: 0.9494257373936542
79
+ name: Pearson Cosine
80
+ - type: spearman_cosine
81
+ value: 0.8549322905323449
82
+ name: Spearman Cosine
83
+ ---
84
+
85
+ # Multilingual mPNet finetuned for cross-lingual similarity
86
+
87
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
88
+
89
+ ## Model Details
90
+
91
+ ### Model Description
92
+ - **Model Type:** Sentence Transformer
93
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
94
+ - **Maximum Sequence Length:** 128 tokens
95
+ - **Output Dimensionality:** 768 dimensions
96
+ - **Similarity Function:** Cosine Similarity
97
+ <!-- - **Training Dataset:** Unknown -->
98
+ - **Languages:** en, ar, pt, es, de, th
99
+ - **License:** apache-2.0
100
+
101
+ ### Model Sources
102
+
103
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
104
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
105
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
106
+
107
+ ### Full Model Architecture
108
+
109
+ ```
110
+ SentenceTransformer(
111
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
112
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
113
+ )
114
+ ```
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import SentenceTransformer
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SentenceTransformer("aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7")
132
+ # Run inference
133
+ sentences = [
134
+ "So Let's - Circle Back - to how YOU got your JOB - Jen Psaki",
135
+ "Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’",
136
+ 'NAIA reverts to MIA, its old name',
137
+ ]
138
+ embeddings = model.encode(sentences)
139
+ print(embeddings.shape)
140
+ # [3, 768]
141
+
142
+ # Get the similarity scores for the embeddings
143
+ similarities = model.similarity(embeddings, embeddings)
144
+ print(similarities.shape)
145
+ # [3, 3]
146
+ ```
147
+
148
+ <!--
149
+ ### Direct Usage (Transformers)
150
+
151
+ <details><summary>Click to see the direct usage in Transformers</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Downstream Usage (Sentence Transformers)
158
+
159
+ You can finetune this model on your own dataset.
160
+
161
+ <details><summary>Click to expand</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Out-of-Scope Use
168
+
169
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
170
+ -->
171
+
172
+ ## Evaluation
173
+
174
+ ### Metrics
175
+
176
+ #### Semantic Similarity
177
+
178
+ * Dataset: `eval-similarity`
179
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
180
+
181
+ | Metric | Value |
182
+ |:--------------------|:-----------|
183
+ | pearson_cosine | 0.9494 |
184
+ | **spearman_cosine** | **0.8549** |
185
+
186
+ <!--
187
+ ## Bias, Risks and Limitations
188
+
189
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
190
+ -->
191
+
192
+ <!--
193
+ ### Recommendations
194
+
195
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
196
+ -->
197
+
198
+ ## Training Details
199
+
200
+ ### Training Dataset
201
+
202
+ #### Unnamed Dataset
203
+
204
+
205
+ * Size: 178,008 training samples
206
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | text1 | text2 | label |
209
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
210
+ | type | string | string | float |
211
+ | details | <ul><li>min: 5 tokens</li><li>mean: 65.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
212
+ * Samples:
213
+ | text1 | text2 | label |
214
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------|
215
+ | <code>CONFIRM THAT THE UNITED STATES CARRIED CARRIED OUT A MILITARY ATTACK ON KABUL</code> | <code>صورة لانفجار عبوة ناسفة استهدفت سيارة عسكرية جنوب غربي مدينة الرقة السوريّة.</code> | <code>0.0</code> |
216
+ | <code>Lisboa grita Fora Bolsonaro durante show de Gustavo Lima De arrepiarl [USER] LISBOA, PORTUGAL</code> | <code>Lisbon screams Fora Bolsonaro during concert by Gustavo Lima</code> | <code>0.0</code> |
217
+ | <code>Singapore stops the vaccination after 48 people died The Telegraph Singapore halts use of flu vaccines after 48 die in South Korea [USER].06flatearth</code> | <code>Singapore halts the rollout of influenza vaccination due to deaths in South Korea</code> | <code>1.0</code> |
218
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
219
+ ```json
220
+ {
221
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
222
+ }
223
+ ```
224
+
225
+ ### Evaluation Dataset
226
+
227
+ #### Unnamed Dataset
228
+
229
+
230
+ * Size: 44,503 evaluation samples
231
+ * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
232
+ * Approximate statistics based on the first 1000 samples:
233
+ | | text1 | text2 | label |
234
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
235
+ | type | string | string | float |
236
+ | details | <ul><li>min: 7 tokens</li><li>mean: 66.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.01 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
237
+ * Samples:
238
+ | text1 | text2 | label |
239
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|:-----------------|
240
+ | <code>141 UN PUEBLO QUE ELIGE A CORRUPTOS, LADRONES Y TRAIDORES NO ES VÍCTIMA, ES COMPLICE. GEORGE ORWELL or [USER] periodismo • poder para la gente</code> | <code>“A people who elect corrupts, imposters, thieves and traitors, are not victims. You are an accomplice!”</code> | <code>0.0</code> |
241
+ | <code>Watch Full Video [URL] Nasir Chenyoti, the one who spread smiles on people's faces, is fighting a life and death battle today.</code> | <code>Pakistani comic Nasir Chinyoti burned in an accident</code> | <code>1.0</code> |
242
+ | <code>at des Bezirkec Potsdam Abt. Veterinarsenen 1500 Heinrich-enn-Allee 107 III-15-01-Br 25. Juli 1985 04.07.1985 Information zum Infektionszeitpunkt und zur Übertragung der Coronavirueinfektion in Krein Brandenburg Ier 03.07.1985 gibt es in Kreis 7 staatliche ban. genossenschaftliche und 24 individuelle Coronavirus infektions-Bestunde (siehe Anlage). - Fia Fratinfektion hat vermutlich in der FA wollin stattgefunden (Blutentnahme v. 22.5.85, Feststellung 30.5.85). Von Galten der Betriebsleitung wird eine Einschleppung tiber 1KVE-Fahrzeuge der TVB Conthin vermutet.</code> | <code>Dieses Dokument beweist, dass das Corona-Virus schon in der DDR existierte</code> | <code>1.0</code> |
243
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
244
+ ```json
245
+ {
246
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
247
+ }
248
+ ```
249
+
250
+ ### Training Hyperparameters
251
+ #### Non-Default Hyperparameters
252
+
253
+ - `eval_strategy`: steps
254
+ - `per_device_train_batch_size`: 64
255
+ - `per_device_eval_batch_size`: 64
256
+ - `learning_rate`: 2e-05
257
+ - `weight_decay`: 0.01
258
+ - `num_train_epochs`: 5
259
+ - `lr_scheduler_type`: cosine
260
+ - `warmup_ratio`: 0.1
261
+ - `fp16`: True
262
+ - `fp16_full_eval`: True
263
+ - `dataloader_num_workers`: 4
264
+ - `load_best_model_at_end`: True
265
+
266
+ #### All Hyperparameters
267
+ <details><summary>Click to expand</summary>
268
+
269
+ - `overwrite_output_dir`: False
270
+ - `do_predict`: False
271
+ - `eval_strategy`: steps
272
+ - `prediction_loss_only`: True
273
+ - `per_device_train_batch_size`: 64
274
+ - `per_device_eval_batch_size`: 64
275
+ - `per_gpu_train_batch_size`: None
276
+ - `per_gpu_eval_batch_size`: None
277
+ - `gradient_accumulation_steps`: 1
278
+ - `eval_accumulation_steps`: None
279
+ - `torch_empty_cache_steps`: None
280
+ - `learning_rate`: 2e-05
281
+ - `weight_decay`: 0.01
282
+ - `adam_beta1`: 0.9
283
+ - `adam_beta2`: 0.999
284
+ - `adam_epsilon`: 1e-08
285
+ - `max_grad_norm`: 1.0
286
+ - `num_train_epochs`: 5
287
+ - `max_steps`: -1
288
+ - `lr_scheduler_type`: cosine
289
+ - `lr_scheduler_kwargs`: {}
290
+ - `warmup_ratio`: 0.1
291
+ - `warmup_steps`: 0
292
+ - `log_level`: passive
293
+ - `log_level_replica`: warning
294
+ - `log_on_each_node`: True
295
+ - `logging_nan_inf_filter`: True
296
+ - `save_safetensors`: True
297
+ - `save_on_each_node`: False
298
+ - `save_only_model`: False
299
+ - `restore_callback_states_from_checkpoint`: False
300
+ - `no_cuda`: False
301
+ - `use_cpu`: False
302
+ - `use_mps_device`: False
303
+ - `seed`: 42
304
+ - `data_seed`: None
305
+ - `jit_mode_eval`: False
306
+ - `use_ipex`: False
307
+ - `bf16`: False
308
+ - `fp16`: True
309
+ - `fp16_opt_level`: O1
310
+ - `half_precision_backend`: auto
311
+ - `bf16_full_eval`: False
312
+ - `fp16_full_eval`: True
313
+ - `tf32`: None
314
+ - `local_rank`: 0
315
+ - `ddp_backend`: None
316
+ - `tpu_num_cores`: None
317
+ - `tpu_metrics_debug`: False
318
+ - `debug`: []
319
+ - `dataloader_drop_last`: False
320
+ - `dataloader_num_workers`: 4
321
+ - `dataloader_prefetch_factor`: None
322
+ - `past_index`: -1
323
+ - `disable_tqdm`: False
324
+ - `remove_unused_columns`: True
325
+ - `label_names`: None
326
+ - `load_best_model_at_end`: True
327
+ - `ignore_data_skip`: False
328
+ - `fsdp`: []
329
+ - `fsdp_min_num_params`: 0
330
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
331
+ - `fsdp_transformer_layer_cls_to_wrap`: None
332
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
333
+ - `deepspeed`: None
334
+ - `label_smoothing_factor`: 0.0
335
+ - `optim`: adamw_torch
336
+ - `optim_args`: None
337
+ - `adafactor`: False
338
+ - `group_by_length`: False
339
+ - `length_column_name`: length
340
+ - `ddp_find_unused_parameters`: None
341
+ - `ddp_bucket_cap_mb`: None
342
+ - `ddp_broadcast_buffers`: False
343
+ - `dataloader_pin_memory`: True
344
+ - `dataloader_persistent_workers`: False
345
+ - `skip_memory_metrics`: True
346
+ - `use_legacy_prediction_loop`: False
347
+ - `push_to_hub`: False
348
+ - `resume_from_checkpoint`: None
349
+ - `hub_model_id`: None
350
+ - `hub_strategy`: every_save
351
+ - `hub_private_repo`: False
352
+ - `hub_always_push`: False
353
+ - `gradient_checkpointing`: False
354
+ - `gradient_checkpointing_kwargs`: None
355
+ - `include_inputs_for_metrics`: False
356
+ - `eval_do_concat_batches`: True
357
+ - `fp16_backend`: auto
358
+ - `push_to_hub_model_id`: None
359
+ - `push_to_hub_organization`: None
360
+ - `mp_parameters`:
361
+ - `auto_find_batch_size`: False
362
+ - `full_determinism`: False
363
+ - `torchdynamo`: None
364
+ - `ray_scope`: last
365
+ - `ddp_timeout`: 1800
366
+ - `torch_compile`: False
367
+ - `torch_compile_backend`: None
368
+ - `torch_compile_mode`: None
369
+ - `dispatch_batches`: None
370
+ - `split_batches`: None
371
+ - `include_tokens_per_second`: False
372
+ - `include_num_input_tokens_seen`: False
373
+ - `neftune_noise_alpha`: None
374
+ - `optim_target_modules`: None
375
+ - `batch_eval_metrics`: False
376
+ - `eval_on_start`: False
377
+ - `eval_use_gather_object`: False
378
+ - `prompts`: None
379
+ - `batch_sampler`: batch_sampler
380
+ - `multi_dataset_batch_sampler`: proportional
381
+
382
+ </details>
383
+
384
+ ### Training Logs
385
+ | Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
386
+ |:----------:|:---------:|:-------------:|:---------------:|:-------------------------------:|
387
+ | 0.1247 | 347 | 0.1578 | - | - |
388
+ | 0.2495 | 694 | 0.1356 | - | - |
389
+ | 0.2498 | 695 | - | 0.1248 | 0.7041 |
390
+ | 0.3742 | 1041 | 0.1206 | - | - |
391
+ | 0.4989 | 1388 | 0.1121 | - | - |
392
+ | 0.4996 | 1390 | - | 0.1026 | 0.7569 |
393
+ | 0.6237 | 1735 | 0.1028 | - | - |
394
+ | 0.7484 | 2082 | 0.093 | - | - |
395
+ | 0.7495 | 2085 | - | 0.0862 | 0.7896 |
396
+ | 0.8731 | 2429 | 0.0889 | - | - |
397
+ | 0.9978 | 2776 | 0.083 | - | - |
398
+ | 0.9993 | 2780 | - | 0.0739 | 0.8097 |
399
+ | 1.1226 | 3123 | 0.0648 | - | - |
400
+ | 1.2473 | 3470 | 0.062 | - | - |
401
+ | 1.2491 | 3475 | - | 0.0662 | 0.8174 |
402
+ | 1.3720 | 3817 | 0.0595 | - | - |
403
+ | 1.4968 | 4164 | 0.0567 | - | - |
404
+ | 1.4989 | 4170 | - | 0.0585 | 0.8277 |
405
+ | 1.6215 | 4511 | 0.0553 | - | - |
406
+ | 1.7462 | 4858 | 0.0513 | - | - |
407
+ | 1.7487 | 4865 | - | 0.0518 | 0.8355 |
408
+ | 1.8710 | 5205 | 0.0497 | - | - |
409
+ | 1.9957 | 5552 | 0.0465 | - | - |
410
+ | 1.9986 | 5560 | - | 0.0462 | 0.8409 |
411
+ | 2.1204 | 5899 | 0.0336 | - | - |
412
+ | 2.2451 | 6246 | 0.0319 | - | - |
413
+ | 2.2484 | 6255 | - | 0.0433 | 0.8438 |
414
+ | 2.3699 | 6593 | 0.0311 | - | - |
415
+ | 2.4946 | 6940 | 0.0304 | - | - |
416
+ | 2.4982 | 6950 | - | 0.0401 | 0.8457 |
417
+ | 2.6193 | 7287 | 0.0306 | - | - |
418
+ | 2.7441 | 7634 | 0.0302 | - | - |
419
+ | 2.7480 | 7645 | - | 0.0356 | 0.8492 |
420
+ | 2.8688 | 7981 | 0.0275 | - | - |
421
+ | 2.9935 | 8328 | 0.0281 | - | - |
422
+ | 2.9978 | 8340 | - | 0.0330 | 0.8509 |
423
+ | 3.1183 | 8675 | 0.0198 | - | - |
424
+ | 3.2430 | 9022 | 0.0198 | - | - |
425
+ | 3.2477 | 9035 | - | 0.0315 | 0.8520 |
426
+ | 3.3677 | 9369 | 0.0183 | - | - |
427
+ | 3.4925 | 9716 | 0.0182 | - | - |
428
+ | 3.4975 | 9730 | - | 0.0303 | 0.8526 |
429
+ | 3.6172 | 10063 | 0.0189 | - | - |
430
+ | 3.7419 | 10410 | 0.018 | - | - |
431
+ | 3.7473 | 10425 | - | 0.0289 | 0.8539 |
432
+ | 3.8666 | 10757 | 0.0171 | - | - |
433
+ | 3.9914 | 11104 | 0.0178 | - | - |
434
+ | 3.9971 | 11120 | - | 0.0274 | 0.8546 |
435
+ | 4.1161 | 11451 | 0.014 | - | - |
436
+ | 4.2408 | 11798 | 0.0142 | - | - |
437
+ | 4.2469 | 11815 | - | 0.0269 | 0.8547 |
438
+ | 4.3656 | 12145 | 0.0137 | - | - |
439
+ | 4.4903 | 12492 | 0.0135 | - | - |
440
+ | 4.4968 | 12510 | - | 0.0266 | 0.8548 |
441
+ | 4.6150 | 12839 | 0.0136 | - | - |
442
+ | 4.7398 | 13186 | 0.0138 | - | - |
443
+ | 4.7466 | 13205 | - | 0.0265 | 0.8549 |
444
+ | 4.8645 | 13533 | 0.0135 | - | - |
445
+ | 4.9892 | 13880 | 0.0136 | - | - |
446
+ | **4.9964** | **13900** | **-** | **0.0265** | **0.8549** |
447
+
448
+ * The bold row denotes the saved checkpoint.
449
+
450
+ ### Framework Versions
451
+ - Python: 3.10.14
452
+ - Sentence Transformers: 3.3.1
453
+ - Transformers: 4.44.2
454
+ - PyTorch: 2.4.1+cu121
455
+ - Accelerate: 0.34.2
456
+ - Datasets: 3.2.0
457
+ - Tokenizers: 0.19.1
458
+
459
+ ## Citation
460
+
461
+ ### BibTeX
462
+
463
+ #### Sentence Transformers
464
+ ```bibtex
465
+ @inproceedings{reimers-2019-sentence-bert,
466
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
467
+ author = "Reimers, Nils and Gurevych, Iryna",
468
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
469
+ month = "11",
470
+ year = "2019",
471
+ publisher = "Association for Computational Linguistics",
472
+ url = "https://arxiv.org/abs/1908.10084",
473
+ }
474
+ ```
475
+
476
+ <!--
477
+ ## Glossary
478
+
479
+ *Clearly define terms in order to be accessible across audiences.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Authors
484
+
485
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
486
+ -->
487
+
488
+ <!--
489
+ ## Model Card Contact
490
+
491
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
492
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./similarity-model/final",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e089699cc0e6ea5faf0684c0625b23917007cdd0a67cf20ea106d3e48aa8860
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }