Add trained model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +492 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ar
|
6 |
+
- pt
|
7 |
+
- es
|
8 |
+
- de
|
9 |
+
- th
|
10 |
+
library_name: sentence-transformers
|
11 |
+
license: apache-2.0
|
12 |
+
metrics:
|
13 |
+
- pearson_cosine
|
14 |
+
- spearman_cosine
|
15 |
+
pipeline_tag: sentence-similarity
|
16 |
+
tags:
|
17 |
+
- sentence-transformers
|
18 |
+
- sentence-similarity
|
19 |
+
- feature-extraction
|
20 |
+
- generated_from_trainer
|
21 |
+
- dataset_size:178008
|
22 |
+
- loss:CosineSimilarityLoss
|
23 |
+
widget:
|
24 |
+
- source_sentence: 'PHOTOS: Giant human skeleton found in cave by Khao Khanap Nam
|
25 |
+
A unique discovery of the giant skeleton. Giant possibly killed by a snake. Important
|
26 |
+
discovery made by paleontologists. Group of scientists unearthing remains of a
|
27 |
+
human skeleton of gigantic proportions. Do we finally have irrefutable proof that
|
28 |
+
human giants existed?'
|
29 |
+
sentences:
|
30 |
+
- The skeleton that appears in the photographs belongs to a giant human. It is an
|
31 |
+
important discovery made by paleontologists.
|
32 |
+
- تم بعون الله شراء خصله شعر رسول الله واودعت اخيرا في دبي بعد شراءها من متحف قرطبة
|
33 |
+
بأسبانيا صلو على رسول الله
|
34 |
+
- Photo shows a 2015 visit by then-US president Barack Obama, infectious diseases
|
35 |
+
expert Dr. Anthony Fauci and philanthropist Melinda Gates to a laboratory in China’s
|
36 |
+
Wuhan
|
37 |
+
- source_sentence: iris o preventable ALL OR PATRIC emergency operations center medical
|
38 |
+
PH manual wennilindered J -Phansuk c
|
39 |
+
sentences:
|
40 |
+
- Bolivianos cruzan frontera para votar en legislativas nacionales argentinas
|
41 |
+
- Note that the pH of the coronavirus ranges from 5.5 to 8.5. So, all we have to
|
42 |
+
do, to eliminate the virus, is consume more alkaline foods, above the acid level
|
43 |
+
of the virus. Such as; Bananas, Lime → 9.9 pH, Yellow Lemon → 8.2 pH, Avocado
|
44 |
+
- 15.6 pH, Garlic - 13.2 pH, Mango - 8.7 pH, Tangerine - 8.5 pH, Pineapple - 12.7
|
45 |
+
pH, Watercress - 22.7 pH, oranges - 9.2 pH
|
46 |
+
- El aseo bucal extremo cura y previene el covid-19
|
47 |
+
- source_sentence: 'ACCORDING TO THE PENDLES 4/22/240 FROM TV AND POLLERS -CASTLE
|
48 |
+
- KEY KO - FAILED - DOES NOT KNOW THE 4.1% 26% fifteen%. 18% HANDLING CASTLE:
|
49 |
+
41%. KEYKO: 26 + 15 +18 = 59% AST MANIPULATE AND PREPARE THE FRAUD AND THE DECEIT.'
|
50 |
+
sentences:
|
51 |
+
- A Spanish scientist declares that soccer players like Messi and Ronaldo earn 1
|
52 |
+
million euros per month and researchers who fight against COVID-19 1,800 euros
|
53 |
+
per month
|
54 |
+
- White and flawed votes join Keiko Fujimori in the survey
|
55 |
+
- The Oxford and Sinovac Biotech vaccines were tested only on animals before being
|
56 |
+
applied to Brazilians.
|
57 |
+
- source_sentence: Imagina que naciste en Una familia pobre. C HONDURAS
|
58 |
+
sentences:
|
59 |
+
- Doria's guinea pig who took the Chinese vaccine against the new coronavirus.
|
60 |
+
- This is a promo for a new Netflix series "Narcos Honduras"
|
61 |
+
- Demônio subindo no teto de igreja na Itália ou Espanha
|
62 |
+
- source_sentence: So Let's - Circle Back - to how YOU got your JOB - Jen Psaki
|
63 |
+
sentences:
|
64 |
+
- Jokowi Demonstrated in Germany
|
65 |
+
- NAIA reverts to MIA, its old name
|
66 |
+
- Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’
|
67 |
+
model-index:
|
68 |
+
- name: Multilingual mPNet finetuned for cross-lingual similarity
|
69 |
+
results:
|
70 |
+
- task:
|
71 |
+
type: semantic-similarity
|
72 |
+
name: Semantic Similarity
|
73 |
+
dataset:
|
74 |
+
name: eval similarity
|
75 |
+
type: eval-similarity
|
76 |
+
metrics:
|
77 |
+
- type: pearson_cosine
|
78 |
+
value: 0.9494257373936542
|
79 |
+
name: Pearson Cosine
|
80 |
+
- type: spearman_cosine
|
81 |
+
value: 0.8549322905323449
|
82 |
+
name: Spearman Cosine
|
83 |
+
---
|
84 |
+
|
85 |
+
# Multilingual mPNet finetuned for cross-lingual similarity
|
86 |
+
|
87 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
88 |
+
|
89 |
+
## Model Details
|
90 |
+
|
91 |
+
### Model Description
|
92 |
+
- **Model Type:** Sentence Transformer
|
93 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
|
94 |
+
- **Maximum Sequence Length:** 128 tokens
|
95 |
+
- **Output Dimensionality:** 768 dimensions
|
96 |
+
- **Similarity Function:** Cosine Similarity
|
97 |
+
<!-- - **Training Dataset:** Unknown -->
|
98 |
+
- **Languages:** en, ar, pt, es, de, th
|
99 |
+
- **License:** apache-2.0
|
100 |
+
|
101 |
+
### Model Sources
|
102 |
+
|
103 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
104 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
105 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
106 |
+
|
107 |
+
### Full Model Architecture
|
108 |
+
|
109 |
+
```
|
110 |
+
SentenceTransformer(
|
111 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
112 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
113 |
+
)
|
114 |
+
```
|
115 |
+
|
116 |
+
## Usage
|
117 |
+
|
118 |
+
### Direct Usage (Sentence Transformers)
|
119 |
+
|
120 |
+
First install the Sentence Transformers library:
|
121 |
+
|
122 |
+
```bash
|
123 |
+
pip install -U sentence-transformers
|
124 |
+
```
|
125 |
+
|
126 |
+
Then you can load this model and run inference.
|
127 |
+
```python
|
128 |
+
from sentence_transformers import SentenceTransformer
|
129 |
+
|
130 |
+
# Download from the 🤗 Hub
|
131 |
+
model = SentenceTransformer("aryasuneesh/paraphrase-multilingual-mpnet-base-v2-7")
|
132 |
+
# Run inference
|
133 |
+
sentences = [
|
134 |
+
"So Let's - Circle Back - to how YOU got your JOB - Jen Psaki",
|
135 |
+
"Jen Psaki said, 'If you don’t buy anything, you won’t experience inflation’",
|
136 |
+
'NAIA reverts to MIA, its old name',
|
137 |
+
]
|
138 |
+
embeddings = model.encode(sentences)
|
139 |
+
print(embeddings.shape)
|
140 |
+
# [3, 768]
|
141 |
+
|
142 |
+
# Get the similarity scores for the embeddings
|
143 |
+
similarities = model.similarity(embeddings, embeddings)
|
144 |
+
print(similarities.shape)
|
145 |
+
# [3, 3]
|
146 |
+
```
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Direct Usage (Transformers)
|
150 |
+
|
151 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
152 |
+
|
153 |
+
</details>
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Downstream Usage (Sentence Transformers)
|
158 |
+
|
159 |
+
You can finetune this model on your own dataset.
|
160 |
+
|
161 |
+
<details><summary>Click to expand</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Out-of-Scope Use
|
168 |
+
|
169 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Evaluation
|
173 |
+
|
174 |
+
### Metrics
|
175 |
+
|
176 |
+
#### Semantic Similarity
|
177 |
+
|
178 |
+
* Dataset: `eval-similarity`
|
179 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
180 |
+
|
181 |
+
| Metric | Value |
|
182 |
+
|:--------------------|:-----------|
|
183 |
+
| pearson_cosine | 0.9494 |
|
184 |
+
| **spearman_cosine** | **0.8549** |
|
185 |
+
|
186 |
+
<!--
|
187 |
+
## Bias, Risks and Limitations
|
188 |
+
|
189 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
190 |
+
-->
|
191 |
+
|
192 |
+
<!--
|
193 |
+
### Recommendations
|
194 |
+
|
195 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
196 |
+
-->
|
197 |
+
|
198 |
+
## Training Details
|
199 |
+
|
200 |
+
### Training Dataset
|
201 |
+
|
202 |
+
#### Unnamed Dataset
|
203 |
+
|
204 |
+
|
205 |
+
* Size: 178,008 training samples
|
206 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
207 |
+
* Approximate statistics based on the first 1000 samples:
|
208 |
+
| | text1 | text2 | label |
|
209 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
210 |
+
| type | string | string | float |
|
211 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 65.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> |
|
212 |
+
* Samples:
|
213 |
+
| text1 | text2 | label |
|
214 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------|
|
215 |
+
| <code>CONFIRM THAT THE UNITED STATES CARRIED CARRIED OUT A MILITARY ATTACK ON KABUL</code> | <code>صورة لانفجار عبوة ناسفة استهدفت سيارة عسكرية جنوب غربي مدينة الرقة السوريّة.</code> | <code>0.0</code> |
|
216 |
+
| <code>Lisboa grita Fora Bolsonaro durante show de Gustavo Lima De arrepiarl [USER] LISBOA, PORTUGAL</code> | <code>Lisbon screams Fora Bolsonaro during concert by Gustavo Lima</code> | <code>0.0</code> |
|
217 |
+
| <code>Singapore stops the vaccination after 48 people died The Telegraph Singapore halts use of flu vaccines after 48 die in South Korea [USER].06flatearth</code> | <code>Singapore halts the rollout of influenza vaccination due to deaths in South Korea</code> | <code>1.0</code> |
|
218 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
219 |
+
```json
|
220 |
+
{
|
221 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
222 |
+
}
|
223 |
+
```
|
224 |
+
|
225 |
+
### Evaluation Dataset
|
226 |
+
|
227 |
+
#### Unnamed Dataset
|
228 |
+
|
229 |
+
|
230 |
+
* Size: 44,503 evaluation samples
|
231 |
+
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
232 |
+
* Approximate statistics based on the first 1000 samples:
|
233 |
+
| | text1 | text2 | label |
|
234 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
235 |
+
| type | string | string | float |
|
236 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 66.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.01 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
|
237 |
+
* Samples:
|
238 |
+
| text1 | text2 | label |
|
239 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|:-----------------|
|
240 |
+
| <code>141 UN PUEBLO QUE ELIGE A CORRUPTOS, LADRONES Y TRAIDORES NO ES VÍCTIMA, ES COMPLICE. GEORGE ORWELL or [USER] periodismo • poder para la gente</code> | <code>“A people who elect corrupts, imposters, thieves and traitors, are not victims. You are an accomplice!”</code> | <code>0.0</code> |
|
241 |
+
| <code>Watch Full Video [URL] Nasir Chenyoti, the one who spread smiles on people's faces, is fighting a life and death battle today.</code> | <code>Pakistani comic Nasir Chinyoti burned in an accident</code> | <code>1.0</code> |
|
242 |
+
| <code>at des Bezirkec Potsdam Abt. Veterinarsenen 1500 Heinrich-enn-Allee 107 III-15-01-Br 25. Juli 1985 04.07.1985 Information zum Infektionszeitpunkt und zur Übertragung der Coronavirueinfektion in Krein Brandenburg Ier 03.07.1985 gibt es in Kreis 7 staatliche ban. genossenschaftliche und 24 individuelle Coronavirus infektions-Bestunde (siehe Anlage). - Fia Fratinfektion hat vermutlich in der FA wollin stattgefunden (Blutentnahme v. 22.5.85, Feststellung 30.5.85). Von Galten der Betriebsleitung wird eine Einschleppung tiber 1KVE-Fahrzeuge der TVB Conthin vermutet.</code> | <code>Dieses Dokument beweist, dass das Corona-Virus schon in der DDR existierte</code> | <code>1.0</code> |
|
243 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
244 |
+
```json
|
245 |
+
{
|
246 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
247 |
+
}
|
248 |
+
```
|
249 |
+
|
250 |
+
### Training Hyperparameters
|
251 |
+
#### Non-Default Hyperparameters
|
252 |
+
|
253 |
+
- `eval_strategy`: steps
|
254 |
+
- `per_device_train_batch_size`: 64
|
255 |
+
- `per_device_eval_batch_size`: 64
|
256 |
+
- `learning_rate`: 2e-05
|
257 |
+
- `weight_decay`: 0.01
|
258 |
+
- `num_train_epochs`: 5
|
259 |
+
- `lr_scheduler_type`: cosine
|
260 |
+
- `warmup_ratio`: 0.1
|
261 |
+
- `fp16`: True
|
262 |
+
- `fp16_full_eval`: True
|
263 |
+
- `dataloader_num_workers`: 4
|
264 |
+
- `load_best_model_at_end`: True
|
265 |
+
|
266 |
+
#### All Hyperparameters
|
267 |
+
<details><summary>Click to expand</summary>
|
268 |
+
|
269 |
+
- `overwrite_output_dir`: False
|
270 |
+
- `do_predict`: False
|
271 |
+
- `eval_strategy`: steps
|
272 |
+
- `prediction_loss_only`: True
|
273 |
+
- `per_device_train_batch_size`: 64
|
274 |
+
- `per_device_eval_batch_size`: 64
|
275 |
+
- `per_gpu_train_batch_size`: None
|
276 |
+
- `per_gpu_eval_batch_size`: None
|
277 |
+
- `gradient_accumulation_steps`: 1
|
278 |
+
- `eval_accumulation_steps`: None
|
279 |
+
- `torch_empty_cache_steps`: None
|
280 |
+
- `learning_rate`: 2e-05
|
281 |
+
- `weight_decay`: 0.01
|
282 |
+
- `adam_beta1`: 0.9
|
283 |
+
- `adam_beta2`: 0.999
|
284 |
+
- `adam_epsilon`: 1e-08
|
285 |
+
- `max_grad_norm`: 1.0
|
286 |
+
- `num_train_epochs`: 5
|
287 |
+
- `max_steps`: -1
|
288 |
+
- `lr_scheduler_type`: cosine
|
289 |
+
- `lr_scheduler_kwargs`: {}
|
290 |
+
- `warmup_ratio`: 0.1
|
291 |
+
- `warmup_steps`: 0
|
292 |
+
- `log_level`: passive
|
293 |
+
- `log_level_replica`: warning
|
294 |
+
- `log_on_each_node`: True
|
295 |
+
- `logging_nan_inf_filter`: True
|
296 |
+
- `save_safetensors`: True
|
297 |
+
- `save_on_each_node`: False
|
298 |
+
- `save_only_model`: False
|
299 |
+
- `restore_callback_states_from_checkpoint`: False
|
300 |
+
- `no_cuda`: False
|
301 |
+
- `use_cpu`: False
|
302 |
+
- `use_mps_device`: False
|
303 |
+
- `seed`: 42
|
304 |
+
- `data_seed`: None
|
305 |
+
- `jit_mode_eval`: False
|
306 |
+
- `use_ipex`: False
|
307 |
+
- `bf16`: False
|
308 |
+
- `fp16`: True
|
309 |
+
- `fp16_opt_level`: O1
|
310 |
+
- `half_precision_backend`: auto
|
311 |
+
- `bf16_full_eval`: False
|
312 |
+
- `fp16_full_eval`: True
|
313 |
+
- `tf32`: None
|
314 |
+
- `local_rank`: 0
|
315 |
+
- `ddp_backend`: None
|
316 |
+
- `tpu_num_cores`: None
|
317 |
+
- `tpu_metrics_debug`: False
|
318 |
+
- `debug`: []
|
319 |
+
- `dataloader_drop_last`: False
|
320 |
+
- `dataloader_num_workers`: 4
|
321 |
+
- `dataloader_prefetch_factor`: None
|
322 |
+
- `past_index`: -1
|
323 |
+
- `disable_tqdm`: False
|
324 |
+
- `remove_unused_columns`: True
|
325 |
+
- `label_names`: None
|
326 |
+
- `load_best_model_at_end`: True
|
327 |
+
- `ignore_data_skip`: False
|
328 |
+
- `fsdp`: []
|
329 |
+
- `fsdp_min_num_params`: 0
|
330 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
331 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
332 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
333 |
+
- `deepspeed`: None
|
334 |
+
- `label_smoothing_factor`: 0.0
|
335 |
+
- `optim`: adamw_torch
|
336 |
+
- `optim_args`: None
|
337 |
+
- `adafactor`: False
|
338 |
+
- `group_by_length`: False
|
339 |
+
- `length_column_name`: length
|
340 |
+
- `ddp_find_unused_parameters`: None
|
341 |
+
- `ddp_bucket_cap_mb`: None
|
342 |
+
- `ddp_broadcast_buffers`: False
|
343 |
+
- `dataloader_pin_memory`: True
|
344 |
+
- `dataloader_persistent_workers`: False
|
345 |
+
- `skip_memory_metrics`: True
|
346 |
+
- `use_legacy_prediction_loop`: False
|
347 |
+
- `push_to_hub`: False
|
348 |
+
- `resume_from_checkpoint`: None
|
349 |
+
- `hub_model_id`: None
|
350 |
+
- `hub_strategy`: every_save
|
351 |
+
- `hub_private_repo`: False
|
352 |
+
- `hub_always_push`: False
|
353 |
+
- `gradient_checkpointing`: False
|
354 |
+
- `gradient_checkpointing_kwargs`: None
|
355 |
+
- `include_inputs_for_metrics`: False
|
356 |
+
- `eval_do_concat_batches`: True
|
357 |
+
- `fp16_backend`: auto
|
358 |
+
- `push_to_hub_model_id`: None
|
359 |
+
- `push_to_hub_organization`: None
|
360 |
+
- `mp_parameters`:
|
361 |
+
- `auto_find_batch_size`: False
|
362 |
+
- `full_determinism`: False
|
363 |
+
- `torchdynamo`: None
|
364 |
+
- `ray_scope`: last
|
365 |
+
- `ddp_timeout`: 1800
|
366 |
+
- `torch_compile`: False
|
367 |
+
- `torch_compile_backend`: None
|
368 |
+
- `torch_compile_mode`: None
|
369 |
+
- `dispatch_batches`: None
|
370 |
+
- `split_batches`: None
|
371 |
+
- `include_tokens_per_second`: False
|
372 |
+
- `include_num_input_tokens_seen`: False
|
373 |
+
- `neftune_noise_alpha`: None
|
374 |
+
- `optim_target_modules`: None
|
375 |
+
- `batch_eval_metrics`: False
|
376 |
+
- `eval_on_start`: False
|
377 |
+
- `eval_use_gather_object`: False
|
378 |
+
- `prompts`: None
|
379 |
+
- `batch_sampler`: batch_sampler
|
380 |
+
- `multi_dataset_batch_sampler`: proportional
|
381 |
+
|
382 |
+
</details>
|
383 |
+
|
384 |
+
### Training Logs
|
385 |
+
| Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
|
386 |
+
|:----------:|:---------:|:-------------:|:---------------:|:-------------------------------:|
|
387 |
+
| 0.1247 | 347 | 0.1578 | - | - |
|
388 |
+
| 0.2495 | 694 | 0.1356 | - | - |
|
389 |
+
| 0.2498 | 695 | - | 0.1248 | 0.7041 |
|
390 |
+
| 0.3742 | 1041 | 0.1206 | - | - |
|
391 |
+
| 0.4989 | 1388 | 0.1121 | - | - |
|
392 |
+
| 0.4996 | 1390 | - | 0.1026 | 0.7569 |
|
393 |
+
| 0.6237 | 1735 | 0.1028 | - | - |
|
394 |
+
| 0.7484 | 2082 | 0.093 | - | - |
|
395 |
+
| 0.7495 | 2085 | - | 0.0862 | 0.7896 |
|
396 |
+
| 0.8731 | 2429 | 0.0889 | - | - |
|
397 |
+
| 0.9978 | 2776 | 0.083 | - | - |
|
398 |
+
| 0.9993 | 2780 | - | 0.0739 | 0.8097 |
|
399 |
+
| 1.1226 | 3123 | 0.0648 | - | - |
|
400 |
+
| 1.2473 | 3470 | 0.062 | - | - |
|
401 |
+
| 1.2491 | 3475 | - | 0.0662 | 0.8174 |
|
402 |
+
| 1.3720 | 3817 | 0.0595 | - | - |
|
403 |
+
| 1.4968 | 4164 | 0.0567 | - | - |
|
404 |
+
| 1.4989 | 4170 | - | 0.0585 | 0.8277 |
|
405 |
+
| 1.6215 | 4511 | 0.0553 | - | - |
|
406 |
+
| 1.7462 | 4858 | 0.0513 | - | - |
|
407 |
+
| 1.7487 | 4865 | - | 0.0518 | 0.8355 |
|
408 |
+
| 1.8710 | 5205 | 0.0497 | - | - |
|
409 |
+
| 1.9957 | 5552 | 0.0465 | - | - |
|
410 |
+
| 1.9986 | 5560 | - | 0.0462 | 0.8409 |
|
411 |
+
| 2.1204 | 5899 | 0.0336 | - | - |
|
412 |
+
| 2.2451 | 6246 | 0.0319 | - | - |
|
413 |
+
| 2.2484 | 6255 | - | 0.0433 | 0.8438 |
|
414 |
+
| 2.3699 | 6593 | 0.0311 | - | - |
|
415 |
+
| 2.4946 | 6940 | 0.0304 | - | - |
|
416 |
+
| 2.4982 | 6950 | - | 0.0401 | 0.8457 |
|
417 |
+
| 2.6193 | 7287 | 0.0306 | - | - |
|
418 |
+
| 2.7441 | 7634 | 0.0302 | - | - |
|
419 |
+
| 2.7480 | 7645 | - | 0.0356 | 0.8492 |
|
420 |
+
| 2.8688 | 7981 | 0.0275 | - | - |
|
421 |
+
| 2.9935 | 8328 | 0.0281 | - | - |
|
422 |
+
| 2.9978 | 8340 | - | 0.0330 | 0.8509 |
|
423 |
+
| 3.1183 | 8675 | 0.0198 | - | - |
|
424 |
+
| 3.2430 | 9022 | 0.0198 | - | - |
|
425 |
+
| 3.2477 | 9035 | - | 0.0315 | 0.8520 |
|
426 |
+
| 3.3677 | 9369 | 0.0183 | - | - |
|
427 |
+
| 3.4925 | 9716 | 0.0182 | - | - |
|
428 |
+
| 3.4975 | 9730 | - | 0.0303 | 0.8526 |
|
429 |
+
| 3.6172 | 10063 | 0.0189 | - | - |
|
430 |
+
| 3.7419 | 10410 | 0.018 | - | - |
|
431 |
+
| 3.7473 | 10425 | - | 0.0289 | 0.8539 |
|
432 |
+
| 3.8666 | 10757 | 0.0171 | - | - |
|
433 |
+
| 3.9914 | 11104 | 0.0178 | - | - |
|
434 |
+
| 3.9971 | 11120 | - | 0.0274 | 0.8546 |
|
435 |
+
| 4.1161 | 11451 | 0.014 | - | - |
|
436 |
+
| 4.2408 | 11798 | 0.0142 | - | - |
|
437 |
+
| 4.2469 | 11815 | - | 0.0269 | 0.8547 |
|
438 |
+
| 4.3656 | 12145 | 0.0137 | - | - |
|
439 |
+
| 4.4903 | 12492 | 0.0135 | - | - |
|
440 |
+
| 4.4968 | 12510 | - | 0.0266 | 0.8548 |
|
441 |
+
| 4.6150 | 12839 | 0.0136 | - | - |
|
442 |
+
| 4.7398 | 13186 | 0.0138 | - | - |
|
443 |
+
| 4.7466 | 13205 | - | 0.0265 | 0.8549 |
|
444 |
+
| 4.8645 | 13533 | 0.0135 | - | - |
|
445 |
+
| 4.9892 | 13880 | 0.0136 | - | - |
|
446 |
+
| **4.9964** | **13900** | **-** | **0.0265** | **0.8549** |
|
447 |
+
|
448 |
+
* The bold row denotes the saved checkpoint.
|
449 |
+
|
450 |
+
### Framework Versions
|
451 |
+
- Python: 3.10.14
|
452 |
+
- Sentence Transformers: 3.3.1
|
453 |
+
- Transformers: 4.44.2
|
454 |
+
- PyTorch: 2.4.1+cu121
|
455 |
+
- Accelerate: 0.34.2
|
456 |
+
- Datasets: 3.2.0
|
457 |
+
- Tokenizers: 0.19.1
|
458 |
+
|
459 |
+
## Citation
|
460 |
+
|
461 |
+
### BibTeX
|
462 |
+
|
463 |
+
#### Sentence Transformers
|
464 |
+
```bibtex
|
465 |
+
@inproceedings{reimers-2019-sentence-bert,
|
466 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
467 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
468 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
469 |
+
month = "11",
|
470 |
+
year = "2019",
|
471 |
+
publisher = "Association for Computational Linguistics",
|
472 |
+
url = "https://arxiv.org/abs/1908.10084",
|
473 |
+
}
|
474 |
+
```
|
475 |
+
|
476 |
+
<!--
|
477 |
+
## Glossary
|
478 |
+
|
479 |
+
*Clearly define terms in order to be accessible across audiences.*
|
480 |
+
-->
|
481 |
+
|
482 |
+
<!--
|
483 |
+
## Model Card Authors
|
484 |
+
|
485 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
486 |
+
-->
|
487 |
+
|
488 |
+
<!--
|
489 |
+
## Model Card Contact
|
490 |
+
|
491 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
492 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./similarity-model/final",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.0",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.0",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e089699cc0e6ea5faf0684c0625b23917007cdd0a67cf20ea106d3e48aa8860
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 128,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|