Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,100 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- code
|
5 |
+
---
|
6 |
+
# Fine-tuned Qwen2.5-Coder-7B for Function Writing
|
7 |
+
|
8 |
+
## Model Description
|
9 |
+
|
10 |
+
This model is a fine-tuned version of Qwen2.5-Coder-7B, specifically optimized for function writing tasks. The base model Qwen2.5-Coder-7B is part of the Qwen2.5-Coder family, which was trained on 5.5 trillion tokens including source code, text-code grounding, and synthetic data.
|
11 |
+
|
12 |
+
### Base Model Details
|
13 |
+
|
14 |
+
* **Type**: Causal Language Model
|
15 |
+
* **Architecture**: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
|
16 |
+
* **Parameters**: 7.61B (6.53B Non-Embedding)
|
17 |
+
* **Layers**: 28
|
18 |
+
* **Attention Heads**: 28 for Q and 4 for KV
|
19 |
+
* **Context Length**: Up to 131,072 tokens
|
20 |
+
|
21 |
+
## Fine-tuning Specifications
|
22 |
+
|
23 |
+
The model was fine-tuned using LoRA (Low-Rank Adaptation) with the following configuration:
|
24 |
+
|
25 |
+
### Training Parameters
|
26 |
+
|
27 |
+
* **Training Data**: 30,000 examples
|
28 |
+
* **Batch Size**: 1 per device
|
29 |
+
* **Gradient Accumulation Steps**: 24
|
30 |
+
* **Learning Rate**: 1e-6
|
31 |
+
* **Number of Epochs**: 2
|
32 |
+
* **Warmup Ratio**: 0.05
|
33 |
+
* **Maximum Sequence Length**: 4,096 tokens
|
34 |
+
* **Weight Decay**: 0.01
|
35 |
+
* **Maximum Gradient Norm**: 0.5
|
36 |
+
* **Learning Rate Scheduler**: Cosine
|
37 |
+
|
38 |
+
### LoRA Configuration
|
39 |
+
|
40 |
+
* **Rank (r)**: 32
|
41 |
+
* **Alpha**: 32
|
42 |
+
* **Dropout**: 0.05
|
43 |
+
* **Target Modules**: q_proj, v_proj, o_proj, gate_proj, up_proj
|
44 |
+
* **Training Mode**: BF16 mixed precision
|
45 |
+
* **RS-LoRA**: Enabled
|
46 |
+
|
47 |
+
### Training Infrastructure
|
48 |
+
|
49 |
+
* **Quantization**: 4-bit quantization (NF4)
|
50 |
+
* **Attention Implementation**: Flash Attention 2
|
51 |
+
* **Memory Optimization**: Gradient checkpointing enabled
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
|
55 |
+
This model is optimized for function writing tasks and can be loaded using the Hugging Face Transformers library. Here's a basic example:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
|
60 |
+
# Load the model and tokenizer
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
"path_to_your_model",
|
63 |
+
trust_remote_code=True,
|
64 |
+
torch_dtype=torch.bfloat16,
|
65 |
+
device_map="auto"
|
66 |
+
)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
68 |
+
"path_to_your_model",
|
69 |
+
trust_remote_code=True
|
70 |
+
)
|
71 |
+
|
72 |
+
# Generate text
|
73 |
+
input_text = "Write a function that..."
|
74 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
75 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
76 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
```
|
78 |
+
|
79 |
+
## Limitations
|
80 |
+
|
81 |
+
* The model is specifically fine-tuned for function writing tasks and may not perform optimally for general code generation or other tasks
|
82 |
+
* Maximum context length during fine-tuning was limited to 4,096 tokens
|
83 |
+
* While the base model supports up to 128K tokens, using beyond 4,096 tokens may require additional validation
|
84 |
+
|
85 |
+
## License
|
86 |
+
|
87 |
+
This model inherits the Apache 2.0 license from its base model Qwen2.5-Coder-7B.
|
88 |
+
|
89 |
+
## Citation
|
90 |
+
|
91 |
+
If you use this model, please cite both the original Qwen2.5-Coder paper and acknowledge the fine-tuning work:
|
92 |
+
|
93 |
+
```bibtex
|
94 |
+
@article{hui2024qwen2,
|
95 |
+
title={Qwen2.5-Coder Technical Report},
|
96 |
+
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
|
97 |
+
journal={arXiv preprint arXiv:2409.12186},
|
98 |
+
year={2024}
|
99 |
+
}
|
100 |
+
```
|